
Acoustic Microrheology: Shear Moduli of Soft Materials  
Determined from Single Bubble Oscillations

            
Anatoliy Strybulevych1†, Valentin Leroy2, M G Scanlon3 and J H Page1

(1Dept. of Physics & Astronomy, Univ. of Manitoba; 2Laboratoire Matière  
et Systèmes Complexes, Université Paris Diderot, 3Dept. of Food Science,  
Univ. of Manitoba) 

1. Introduction 

Many materials such as gels and polymers are 
viscoelastic.  One of the most important and 
frequently studied material properties of soft 
materials is the shear modulus.  However, even in 
the simplest materials, properties are complex, and 
in contrast with most solids, the shear modulus can 
exhibit significant time, frequency and local 
position dependence. Thus, techniques that exploit 
the local viscoelastic properties of a material have 
great potential not only in material science but also 
in medical applications, where changes in the 
elasticity of tissue are often related to pathology. 

A number of methods such as Dynamic 
Magnetic Resonance Elastography (MRE) [1,2], 
Acoustoelasticity [3], Supersonic shear imaging [4] 
or Vibro-acoustography [5] have been developed to 
evaluate the elastic properties of soft tissues.  The 
general approach is to measure the response of 
material to an exitation force and use it to 
reconstruct the elastic parameters. In this article we 
introduce a new technique for determining the 
viscoelasticity of soft materials based on the 
oscillations of single bubbles injected into the 
material of interest.  

2. Theory 

It is well known that a bubble is a strong 
acoustic scatterer that exhibits a low-frequency 
resonance that depends on the elastic properties of 
the surrounding medium.  Hence, by using a 
suitable model, measurements of the resonant 
frequency and damping rate can be used to 
accurately determine the complex shear modulus. 

An air bubble with radius R0 excited by a 
plane pressure wave � �exp ,p i t ikx�� �  generates 
at distance r a spherical pressure wave 

� �expfp r i t ikr�� � � , where f is the scattering 
function given by 
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Here � and k are angular frequency and wave 
vector of the pressure wave. �0 is known as the 
Minnaert resonance frequency and � is the damping 

rate, which includes viscous, thermal and acoustic 
radiation losses.  For the case of a viscoelastic 
medium, good approximations for �0 and the 
viscous damping rate �vis are given by 
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Here � is the ratio of specific heat capacities for air, 
� is the density of the material of interest, and � =
��+i��� is its shear modulus.  Formulae for the 
thermal and acoustic radiation losses can be found 
in [6]; details of the model are given in [7].  Using 
this model, the experimental values of the 
resonance frequency and damping rate of the 
oscillating bubble can be used to determine the 
material’s complex shear modulus. 

3. Materials and Methods 

Experiments were performed on Agar gel of 
2% concentration (Sigma).  Bubbles from 0.4 to 
1.2 mm in radius were injected into the materials 
with a syringe.  The bubbles were then entrapped 
as the sol gelled.  After gelling of the samples, 
small cubes were cut with a trimming blade.  The 
bubble radii were measured by an optical imaging 
technique. 

Measurements were performed in a water 
tank. First of all, the sample containing a single 
bubble was placed on top of a generating transducer 
with a central frequency of 100 kHz.  The 
frequency of the continuous sinusoidal signal, 
produced by an arbitrary waveform generator, was 
slowly swept from 3 to 50 kHz with a step of 200 
Hz.  The signals at each frequency were averaged 
over 500 times in order to improve the quality of 
the data. The transmitted signals, psam, were 
detected by a hydrophone, amplified and recorded 
on digital oscilloscope.  After that, the sample was 
carefully removed so that the hydrophone remained 
in the same position, and the procedure was 
repeated to obtain a reference signal, pref.  Both the 
phase and the magnitude of acquired signals were 
calculated using fast Fourier transforms (FFT). 
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4. Results and Discussion 

As discussed by Leroy et al [8], the ratio of 
the extra pressure generated by the bubble 
oscillations (psam – pref) to the pressure pref,
measured in the absence of the bubble 
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can be used to determine the parameters �
0
, and �

by applying a least squares method.  Figure 1
shows the magnitude and cosine of the phase angle 
of A(�) as a function of frequency for a bubble with 
a radius equal to 0.92 mm in 2% Agar gel. Solid 
lines are fit with f0 = 4350 Hz and � = 350 Hz, 
yielding �� = 61.5 kPa and ��� = 9.2 kPa.   

If we apply the method described above to 
bubbles with different radii and hence different 
resonance frequencies, the frequency dependence of 
the shear modulus can be also obtained.  Figure 2
presents values of the shear modulus �� measured 
from oscillations of individual bubbles as well as 
independent measurement at low frequencies (125, 

250 and 400 Hz) obtained by MRE [2].  Similar 
values (not presented here) were obtained in the 
frequency range from 300 to 500 kHz using an 
acoustic reflection technique. It appears that there is 
no frequency dependence of �� over a large 
frequency range.  On the other hand, the loss part 
of the shear modulus ��� is much smaller than ��
and increases with frequency (see Fig. 3).  This 
acoustic technique is sufficiently sensitive to 
measure these small values of ���, which are not 
detected by MRE.

5. Conclusions 

In this paper, we demonstrate that the acoustic 
resonance of a single bubble can be used to 
accurately determine the local material properties of 
the medium in which the bubble is embedded.  
Because the resonance frequency is inversely 
proportional to the radius of the bubble, 
experiments on bubbles of different sizes enabled 
the frequency dependence of the complex shear 
moduli of the materials to be determined.   

References 
1. R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. 

Greenleaf, A. Manduca and R. L. Ehman: 
Science 269 (1995) 1854. 

2. U. Hamhaber, F. A. Grieshaber, J. H. Nagel and 
U. Klose: Magn. Reson. Med. 49, (2003) 71. 

3. R. M. Lerner, K. J. Parker, J. Holen, R. Gramiak 
and R. C. Waag: Acoust. Imaging 16 (1988) 317. 

4. J. Bercoff, M. Tanter and M. Fink: IEEE Trans 
Ultrason Ferroelectr Freq Control. 51 (2004) 396. 

5. S. Chen, M. Fatemi and J. F. Greenleaf: J. Acoust. 
Soc. Am. 112 (2002) 884. 

6. V. Leroy, A. Strybulevych, J. H. Page and M. G. 
Scanlon: J. Acoust. Soc. Am. 123 (2008) 1931. 

7. T. G. Leighton: The Acoustic Bubble (San Diego, 
California, 1997) p.613. 

8. V. Leroy, M. Devaud and J.-C. Bacri: A. J. Phys. 
70 (2002) 1012. 

Fig. 1  Magnitude and cosine of the phase angle 
of A(�) as a function of frequency. 

Fig. 3  Frequency dependence of the loss part of 
the shear modulus for 2% agar gel

Fig. 2  Frequency dependence of the storage part 
of the shear modulus for 2% agar gel. 
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