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1.  Introduction 

Study of guided waves in a plate has a long 
history since Rayleigh and Lamb in 19th century. It 
has been a corner stone upon which such varied 
applications as seismology,  Non-destructive 
testing and vibrating devices for frequency control 
and selection have been developed. 

 The behavior of dispersion curves of 
propagating waves is complex enough even in an 
isotorpic plate. The complexity incresases in an 
anisotopic plate and there are still unexplored area 
to study. In fact, Ivan Anisimkin found numerically 
and verified experimentally peculiar modes 
propagating along the x (diagonal) axis in a quartz 
ST cut plate. 1)

  They are quasilongitudinal (QL), 
that is dominat displacement is nearly uniform 
through the plate thickness with little horizontal and 
vertical shear displacements. Y. V. Gulyaev 
conducted further detailed studies. 2, 3)

 Their 
analyses, however, were solely numerical.  

This paper presents a mathematical anlysis 
and gives a formulus to yield "allowed" bands for 
QL-modes. The formulus also covers newly found 
quasishear (QS) modes, in which shear 
displacements are dominant with littel longitudinal 
displacement at the surfces of a plate. 

Refined profiles of displcacements through  
the plate thickness are presented to solve a mistery 
of little jumps in their profiles of longitudinal 
displacement. 

 

2.  Analysis 

For clarity, we present here pure elastic case 
of rotated Y cut of quartz, of which 
electromechanical coupling is small. A full 
treatment of piezoelectricity will be presented in a 
subsequent paper. 

The stiffness matrix of rotated Y cut exhibits 
monoclinic symmetry shown in (1). Constants are 
normalized by c11, which is independent on 
rotation angle. The velocity of longitudinal wave is 
also independent on rotation angle. 
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Due to the symmetry, displacements can be 

written in the following forms, omitting a time 
factor. 

For symmetric modes: 

 

 

For anti-symmetric modes:  

 

 

 
In order to satisfy the equation of motion, the 

following determinant shall be zero. 
 
 
 
 
 
 

where  Cpn is phase velocity normalized by the 
velocity of longitudinal wave and: 

 

For a given value of Cpn, (4) is a cubic equation of 
x

 2
 , which yields three roots, xx1, xx2 and xx3 and 

its associated amplitude ratio of  U, V and W. 

Now the displacement consists of three 
similar terms corresponding to the above mentioned 
three roots with three coefficients. Traction free 
boundary conditions at the upper and the lower 
surfaces of the plate shall be satisfied and yield  an 
equation in the following form, which yields 
dispersion curves. 
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where h is the half thickness of the plate and  
is equal to H/ in Anisimkin' notation. 

 

3.  Behavior in the vicinity of  Cpn = 1 

For QL-modes, behavior in the vicinity of 
Cpn = 1 is of particular interest. 

For Cpn = 1, one root, xx1 becomes zero and 
the other two roots, xx2 and xx3, are given by the 
following reduced determinant.  

 
 
 
 
 
Fig.1 shows these two roots as functions of 

rotated angle. It can be seen two roots are very 
close (but never touch) at the angle around 42.75

132.75 in Anisimkin' notation). 
Fig.2 shows ratios of displacements, u, v and 

w (U1, U3 and U2 in Anisimkin' notation) at the 
surface based on the solution of (4). Both ratios 
become zero at Cpn slightly higher than 1, which 
corresponds to a plateau of dispersion curve. Since 
a dominant component of the determinant in (4) is a 
single trigonometric function, such zero crossing 
points exist along  axis  with regular interval. 
They are approximately given by:  

 
 
 

where m is an even integer for QL modes. 

Fig. 3 shows a profile of displacements 
across the thickness for QL mode (m=1). They are 
smooth sinusoidal curves without any peculiar jump 
mentioned by Gulyaev����� 

 

4.  Quasishear modes 

When m is an odd integer, (8) yields still 
approximate solutions of (6), which may be called 
quasishear (QS) modes, because shear  
displacements are dominant with little longitudinal 
displacement at least at the surfaces of the plate as 
shown in Fig. 4. It is like a horizontal shear wave in 
an isotropic plate, but accompanies substantial 
longitudinal displacement inside. 
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Fig. 1  xx2 and xx3, square of wave number across           
the thickness as functions of rotation angle. 

     

 

 

 

 

 

Fig.2  Ratios of shear displacements to 
longitudinal displacement at the surface. (QL,m=2) 

 

 

 

 

 
 
 
 
 
Fig. 3  Profile of displacements across the 
thickness for QL mode ( m=2). 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4  Profile of displacements across the 
thickness for QS mode ( m=1). 

 

 

 

����� �

－ 398 －




