An orientation-controlled KNbO₃ thick film transducer for high resolution ultrasonic imaging

VHF帯超音波イメージングを目的とした KNbO3 配向制御膜トランスデューサ

Mutsuo Ishikawa¹, Hiro Einishi¹, Tomohito Hasegawa¹, Takeshi Morita², Yoshifumi Saijo³, Minoru Kurosawa¹, Hiroshi Funakubo¹ (¹Tokyo inst. Tech.; ²The Univ. of Tokyo, ³Tohoku Univ.)

石河睦生¹, 榮西 弘¹, 長谷川智仁¹, 森田 剛², 西條芳文³, 黒澤 実¹, 舟窪 浩¹ (¹東工大 総理工;²東大 新領域,³東北大 医工)

1. Introduction

Piezoelectric films are expected to be used in highly sensitive ultrasonic transducers. The performance of transcuers is directly related to the properties of the piezoelectric film materials.

KNbO₃ is a candidate piezoelectric material for each application owing to its excellent piezoelectric properties. However, the films of KNbO3 and KNbO3-based materials have not been widely utilized as transducer materials despite a number of reports describing various deposition techniques. Because it is difficult to deposit KNbO₃ films with superior electrical properties. This is related to a potassium deficiency in the films due to the high volatility of potassium during the deposition and/or annealing processes at a high temperature and/or under vacuum conditions. Hence, KNbO3 films with ferroelectric and piezoelectric properties have hardly been reported, especially thicker films above 10 µm have not been reported. It has not yet been possible to obtain thick films, even though the piezoelectric properties and thicker films are important for the design of ultrasonic transducers.

Therefore, we tried to fabricate thick films of $KNbO_3$ using hydrothermal method^{1,2)} which is escapable for the potassium deficiency. In addition prototype ultrasonic transducer using hydrothermal $KNbO_3$ was fabricated and evaluated as the ultrasonic transmitting and receiving devices.

2. Experimental Procedure

The KNbO₃ thick films were grown at 240 °C on $(100)_c$ SrRrO₃ // SrTiO₃ substrates by the hydrothermal method. The $(100)_c$ -oriented SrRrO₃ layers used for bottom electrodes were epitaxially grown on the (100) SrTiO₃ substrates by a sputtering method³. An autoclave (PARR, 4748) that contained an inner vessel made of Teflon to resist high alkali solutions was utilized for the hydrothermal growth. A 20 m*l* solution of 10 mol/*l* KOH (Kantokagaku) and 1.0 g of niobium oxide powder (Nb₂O₅, purity 99.95%, Kantokagaku) were

used as source materials of K and Nb, respectively. The $(100)_c$ SrRrO₃ // SrTiO₃ substrate was kept facing down with a Teflon folder in the inner vessel, and the above-mentioned source materials were mixed and placed in the autoclave. The autoclave was shut tight and placed in a constant-temperature oven (Yamato DS-400) maintained at 240 °C for a hydrothermal chemical reaction.

The thickness of the obtained films grown on (100)_c SrRrO₃ // SrTiO₃ substrates was determined by a scanning electron microscopy (SEM; Hitachi S-4800) and a surface profilometer (Veeco DEKTAK 3ST). The crystal structure and the orientation of the films were characterized by X-ray diffraction analysis using a four-axis diffractometer (HRXRD; Philips X'Pert MRD system) with $CuK\alpha_1$ radiation. The dielectric and piezoelectric properties were measured using Pt/KNbO₃/SrRuO₃ capacitors at room temperature; after Au or Pt deposition by evaporation method. The needle-type electrode was connected to the top electrode and the SrRuO₃ bottom electrode was grounded through the Ag paste. The dielectric properties and the piezoelectric properties were measured with an impedance analyzer (HP HP4194A) and a laser Doppler velocimeter (Polytec OFV-3001). The ultrasonic transmitting and receiving properties of the prototype ultrasonic transducer for 20µm-thick hydrothermal KNbO3 film were measured in degassed water with an ultrasonic Pulser Receiver (Olympus 5910PR).

3. Results and Discussion

Figure 1 shows a logarithmic scale XRD pattern for a 16μ m-thick KNbO₃ films. Only $\{100\}_{pc}$ peaks of the KNbO₃ were observed, with the exception of the coexistence of small intensity peaks (less than 1%) of $\{110\}_{pc}$ located around 32°. In plane orientation was ascertained by X-ray pole figure measurement, meaning the epitaxial groeth of this film.

Figure 2 shows the relationship between the piezoelectric strain and the driving electric field

versus strain measured at 100 kHz. The effective longitudinal piezoelectric constant, d_{33} ^{eff}, calculated from the linear region indicated in Fig. 2 from 0 to 100 V in the butterfly loops was estimated to be 86 pm/V. Additionally, $\varepsilon_{\rm r}$ and dielectric loss at 100 kHz were 415 and 0.08, respectively. Our present results indicate that the hydrothermal method enables the excellent KNbO₃ thick film without any doping or solid solution, which might be related to the low process temperature of the hydrothermal method.

Figure 3 shows (a) ultrasonic wave form of transmitting and receiving using the prototype ultrasonic probe and (b) its power spectrum. Three peaks were observed at 17 MHz, 95 MHz and 130 MHz. The frequency response was analyzed using Mason's equivalent circuit. According to the result, the 95 MHz peak is exited by thickness mode of piezoelectric effect. This result indicated that the prototype ultrasonic transducer realized the ultrasonic transmitting and receiving at high frequency in the degassed water.

Fig. 1 XRD pattern of $KNbO_3$ thick film grown on (100)c SrRuO₃//(100) SrTiO₃ substrate.

Fig.3 (a) ultrasonic wave form of transmitting and receiving using the prototype ultrasonic probe and (b) its power spectrum.

4. Conclusions

{100}_{pc}-oriented KNbO₃ films were successfully grown on (100)_c SrRuO₃//SrTiO₃ substrates at 240°C by the hydrothermal method. The {100}-oriented KNbO₃ thick films showed clear strain butterfly curve originating from the piezoelectricity. ε_r and dielectric loss at 100 kHz were 415 and 0.08, respectively. The observed piezoelectric constant value, the d_{33}^{eff} obtained using a Laser Doppler velocimeter was 86 pm/V. The prototype ultrasonic probe using 20µm-thick hydrothermal KNbO₃ film realized the ultrasonic transmitting and receiving at very high frequency bandwidth in degassed water.

Acknowledgements

This work was supported by the Inoue Foundation for Science, the Konica Minolta Imaging Science Foundation, the Ono Foundation for Acoustics and a Grant-in-Aid for Young Scientists B (21700503).

References

- 1) T. Morita, Y. Wagatsuma, H. Morioka, H. Funakubo, N. Setter, Y. Cho: J. Mater. Res. 19 (2004) 1862.
- M. Ishikawa, S. Yasui, S. Utsugi, T. Fujisawa, T. Yamada, T. Morita, M. Kurosawa and H. Funakubo: Mater. Res. Soc. Proc. (2009) 1139.
- 3)T. Kamo, K. Nishida, K. Akiyama, J. Sakai, T. Katoda, H. Funakubo; Jpn. J. Appl. Phys. 46(10) (2007) 6987.
- 4) E. K. Sitting, IEEE Trans. Sonics & Ultrason. Vol. SU-16, No.1, (1969)