顕微ブリルアン散乱法によるギガヘルツ帯音波物性

Gigahertz Acoustic Spectroscopy by Micro-Brillouin Scattering

小島誠治[†],(筑波大 数理) Seiji Kojima[†], PAS, Univ. Tsukuba

The application of micro-Brillouin scattering spectroscopy (MBSS) to condensed matter physics is reviewed. The combination of tandem multipass Fabry-Perot interferometer and optical microscopy enables the observation of elementary excitation in the gigahertz range between 1 and 1000 GHz. Using MBSS, the elastic properties and relaxation processes have been studied in ferroelectric materials, glass-forming materials and protein crystals.

1. はじめに

ブリルアン散乱は、音響フォノンによる光の 非弾性散乱として知られているが、最近では磁 気的励起状態や局在振動モード、緩和モードな ど1-1000GHz のダイナミクスを調べる分光が 広くブリルアン散乱分光法と呼ばれている。こ の1-1000GHz の領域は一般に他の周波数帯に 比べて公表されている物性データの量が極め て少ない。誘電分光法は最も広帯域の分光法と して知られているが、この周波数帯を1台の測 定器でカバーすることはできない。電気的測定 の上限は100GHz 程度、電磁波分光の下限はテ ラヘルツ時間領域分光法(THz-TDS)により従 来の遠赤外分光法よりかなり伸びたが 100GHz あたりが下限であり、どちらを用いてもこの周 波数帯はカバーできず、同一試料を用いた同時 測定も原理的に不可能である[1]。

一方、ブリルアン散乱法では、単一周波数の レーザー光の非弾性散乱を測ることにより1台 の分光測定系でこのギガヘルツ帯をカバーで きる。さらに、光学顕微鏡を用いた顕微分光法 と組み合わせると、微小な試料や微小領域の分 光も可能となる[2]。本講演では、この顕微ブリ ルアン散乱法 (Micro-Brillouin scattering Spectroscopy, MBSS)を用いて調べた強誘電体の 構造相転移、液体・ガラス転移、蛋白質結晶の 物性について、弾性的性質ならびにギガヘルツ 帯のダイナミクスに関する研究を紹介する。

2. 顕微ブリルアン散乱法

ブリルアン散乱はギガヘルツ帯の分光をす るために、分光器には回折格子ではなく干渉計 を用いる。1-1000GHzの広い周波数帯で高い分 解能を得るために Fabry-Perot 干渉計をタンデ ムに配置しそれぞれを3回透過させるマルチ パス型干渉計と光学顕微鏡を組み合わせた装 置の概要を Fig.1に示す。レーザーは発振線幅 が狭い単一モードが必要で、エタロンを入れた アルゴンイオンレーザーかグリーン YAG レー ザーを用いている。検出は高感度の光電子増倍 管により光子計数法により行う[2]。測定例とし て溶液中の微小な蛋白質結晶のブリルアンス ペクトルを Fig.2 に示す。

Fig. 1 Schematic diagram of micro-Brillouin scattering setup.

Fig. 2 Brilloin scattering spectra of a protein crystal and solution.

また、測定する試料の温度は、クライオスタット、IR イメージ炉により 10K から 1700K の広い 温度領域をカバーしている。

3. 強誘電体のギガヘルツ帯音波物性

強誘電体(ferroelectrics)とは、自発的に電気的 分極(自発分極)を持ち、その符号が外部電場 により反転する物質である。その履歴特性はメ モリーとして使われ、キャパシター、圧電材料、 電気光学材料、非線形光学材料など多岐に及ぶ

[†]kojima@bk.tsukuba.ac.jp

[3]。また、常誘電相から強誘電相への相転移が 強誘電相転移で、ノーマルな強誘電体では誘電 率はキュリー・ワイス則に従いキュリー温度 T_C で発散する。それに対して、相転移温度付近で 大きな誘電分散を示しブロードな誘電率の極 大を示すのがリラクサー強誘電体 (relaxor ferroelectrics)であり、巨大圧電効果や巨大誘電 応答などにより最近注目されている。

一般に、分極と歪が強く結合している強誘電 相転移[4]では、相転移の秩序変数や分極の揺ら ぎについて弾性異常を通して新しい知見が得 られる。以下に、代表的なペロブスカイト構造 酸化物の強誘電体から、最近調べた2次相転移 を示すノーマルな強誘電体である KF 添加 BaTiO₃(BT)結晶とリラクサー強誘電体 0.93Pb(Zn_{1/3}Nb_{2/3})O₃-0.07PbTiO₃(PZN-0.07PT)結 晶の研究について紹介する。

3.1 ノーマルな強誘電体の強誘電相転移

BaTiO₃の強誘電体相転移は一次であるが、KF 添加により二次転移に近づく。KF 添加チタン 酸バリウム(Ba₀₈₈K_{0.12}TiO_{2.88}F_{0.12}, KF-BT/0.12)[5] について、ブリルアン散乱シフトより求めた緩 和時間の臨界緩和を Fig. 3 に示す。キュリー温 度Tcよりも100K以上高温で弾性定数が線形の 温度依存性からはずれるところは鉛系リラク サー強誘電体に類似しており、動的な極性ナノ 領域 (polar nanoregion, PNR) が常誘電相で存在 することを示唆している。BT ではテラヘルツ 帯の赤外活性光学モードのソフト化が知られ ているが、ギガヘルツ帯のブリルアン散乱から 求めた分極の緩和時間は Tc 付近で臨界緩和を 示した。同様の臨界緩和は新強誘電体 BaTi₂O₅ でも見出されている。[7]。これらの結果は、局 所対称性の乱れを伴う強誘電相転移における 秩序・無秩序型と変位型の共存についての Bussmann の新しい理論を支持している。

Fig. 3 Temperature dependence of relaxation time in KF-BT/0.12.

3.2 リラクサー強誘電体の強誘電相転移

リラクサー強誘電体は、ノーマルな強誘電体 とは異なる相転移を示す。その常誘電相では、 静的並びに動的な PNR が存在する。立方晶系 の常誘電相において存在する動的 PNR は菱面 体晶系の対称性であるために局所的分極と応 力の揺らぎに圧電結合があり、ブリルアン散乱 の測定結果から分極の緩和時間 τ の温度依存性 を導出できる[8]。ペロブスカイト構造のリラク サー強誘電体 PZN-0.07PT 結晶の緩和時間の温 度依存性を Fig. 4 に示す。PNR は Burns 温度 $T_{\rm B}$ ~710K で発生し、温度降下とともに成長する が AE が観測される温度 T*~500K 付近からその 成長が押さえられ緩和が引き伸ばされる (Stretched slowing down)。

Fig. 4 Temperature dependence of inverse relaxation time.

また、PNR のサイズは S を形状因子として SVτ で与えられ、その温度依存性は、Fig. 5 のよう になる。図中の 500K での値 22A は、中性子非 弾性散乱によるフォノン分散異常で決めた値 20-25A にほぼ一致している。

Fig. 5 Temperature dependence of size of dynamic PNR.

4. ガラスのギガヘルツ帯音波物性

結晶とは異なり並進対称性を持たない非 晶質物質の中で、ガラス転移を起こしてガラ スになる物質をガラスという。ガラスは構造 材料から機能材料まで広く使われている。そ の中から組成変化により構造単位が変化し て物性が大きき変わる2成分ガラスのホウ 酸異常現象と、液体・ガラス転移の階層的ダ イナミクスについて紹介する。

4.1 ガラスの中距離構造と物性

ホウ酸ガラスはホウ素が3配位のボロクソー ル環を基本単位とする共有結合によるネット ワークガラスの一つである。アルカリ金属やア ルカリ土類金属を添加することにより音速,密 度、膨張係数等の物理量は添加量に対して極大、 極小を示し、ホウ酸異常現象 (borate anomaly) と呼ばれている[9]。アルカリ金属ホウ酸塩ガラ ス xM₂O・(1-x)B₂O₃ (M=Li, Na, K, Rb, Cs)は、結 晶状態では圧電結晶 Li₂B₄O₇, 非線形光学結晶 Li₂BO₅(LBO), CsLiB₆O₁₀(CLBO)等が知られて おり、ガラス状態においても適当なポーリング 処理による非線形光学効果の発現が可能な代 表的な酸化物ガラスである。

その中で物理量が顕著に変化するのがナト リウムホウ酸塩ガラス xNa₂O・(1-x)B₂O₃ である。 密度はナトリウムの組成 x が 0 から 30mol%ま での変化で 20%も増加し、ガラスとしてのフラ ジリティ(fragility) が顕著に増加する[10]。また、 試料は溶液反応法により均一性の高いガラス を作製することが可能である。その弾性定数の 組成依存性を Fig. 6 に示す。この図で 35mol% まではバルクガラスが得られるがそれより高 濃度では、クエンチした薄片試料となるため、 ブリルアン散乱によってのみ測ることができ る。いずれの弾性定数も 34%付近に極大を示し ており、中距離構造の変化に対応している[11]。

Fig. 6 The composition dependence of elastic constants in $xNa_2O \cdot (1-x)B_2O_3$ glass.

4.2 低分子液体のガラス転移

単純液体では高温の液体状態から温度を 下げると融点で結晶となるのに対して、何ら かの複雑さをもつ液体は、過冷却液体状態を 経てガラス状態へと変化するのがガラス転 移である。この現象は平衡状態における相転 移ではなく,その非平衡状態における転移で あり、そのダイナミクスは統計力学の重要な トピックスである。最近ではモード結合理論 (MCT)の適用により注目されてそのダイナ ミクスについての研究は発展し、ガラスに特 有のケージ自体の遅いα-緩和とケージ内の 速いβ-緩和についての理解が進んだ。

また実験では、広帯域非弾性光散乱[12.13]、 中性子非弾性散乱、広帯域誘電分光測定、 NMR 測定等により広い周波数帯にわたるガ ラス転移のダイナミクスが明らかにされた。 中間液体プロピレングリコール(PG) につい て広帯域光散乱により調べた緩和マップを Fig. 7 に示す。ブリルアン散乱は、α-緩和の 高振動数側テイル、音響モード、速い緩和、 ボソンピークの低振動数側テイルをカバー している。

Fig. 7 Broadband spectroscopy of a liquid-glass transition of propylene glycol.

5. 蛋白質結晶のギガヘルツ帯音波物性

水溶液中で弱い相互作用により並進対称性 のある三次元構造をとる蛋白質結晶は、非常に 揺らぎの大きい系として知られ、温度や圧力に 対して顕著な変化を示す。代表的な蛋白質であ る卵白リゾチーム(HEWL)を取り上げ、異なる 結晶構造の単結晶の育成、並びにその結晶の温 度、湿度などの外部環境による変性や脱水に関 連した構造の変化に起因するダイナミクスを MBSSにより調べた。結晶成長は、リゾチーム 水溶液と反応性が低く高密度のフロリナート との界面を利用した二液界面法により、結晶性 の高い正方晶系、斜方晶系、単斜晶系の3種類 の結晶成長を行った[14]。非弾性散乱スペクト ル中のブリルアン成分より音響フォノンの位 相速度、音波吸収係数を温度、蛋白質濃度の関 数として正確に決めた。これらのタンパク質結 晶、並びにタンパク質水溶液中のフォールディ ング状態からアンフォールディング状態へと 転移し、さらに高温では会合が進んでゲル状態 へと転移する過程を調べた[15]。また水和水の 影響を調べるために等温条件下における脱水 過程も調べ、Avramiの式によりその過程の2 次元から3次元への次元性の変化を見出した。

また、低温において細胞中の水は結晶化し, その氷晶が細胞やタンパク質を破壊する. これ が凍結保存における問題点であり、高いガラス 化傾向を持つ生体凍結保護物質が不可欠であ る. 凍結保護物質は低温でガラス状態となり, 氷晶の生成を抑制する働きを持っている.一方, 生体内で活性となるためにはタンパク質分子 が三次元構造をとることが必要であるが、その 溶液内部あるいは結晶内部では,三次元構造を 維持するために水和機構が中心的な役割を担 う.様々な低級アルコール水溶液の中で HEWL 正方晶系単結晶のブリルアン散乱を行い、溶液 の凍結保護効果及びタンパク質分子挙動につ いて調べた[16]。 さらに、蛋白質結晶のギガヘ ルツ帯の緩和を調べた結果、緩和時間の温度依 存性は Arrhenius 則τ=τ_oexp(*ΔE*/k_BT)に従い、溶液 の種類によりパラメータにも系統的な変化が 見られた。Arrhenius 則における活性化エネルギ $-\Delta E$ と τ_o について、**Fig. 8** に示す Meyer-Neldel Rule に従う相関が見られた。

Fig. 8 Correlation between Arrhenius parameters of tetragonal HEWL crystals in aqueous solution.

6.おわりに

レーザー光を励起光源としてギガヘルツ帯 の非弾性散乱光を高分解能で分光するブリル アン散乱法では、弾性異常とともに準弾性散乱 からギガヘルツ帯の緩和現象を調べられる。ま た、レーザー光は非接触・非破壊で音波物性を 調べられる有用なプローブであり、外場(温度・ 圧力・電場)の変化における物性研究に適してい る。顕微ブリルアン散乱の応用はここで述べた、 強誘電体、ガラス、蛋白質以外にも幅広い応用 が可能であり、広く様々な分野で使われること を願っている。

謝辞

本研究は筑波大小島研 OB の高在賢(韓国、 ハリム大学)、江福明(米国、プリンストン大 学)、A. Hushur(米国、ハワイ大学)、G.Shabbir (パキスタン、原子力研究所)A.Muhtar(米国、 カーネギー研究所)、S.Sivasbramanian(インド、 原子力研究所)、金度漢(韓国、LG 電子)、M. Maczka(ポーランド、ILTS)、塚田真也(島根 大)、大学院生との共同研究によるものである。 本研究の一部は文科省科研費基盤研究(B)、萌 芽研究、特定研究の研究助成を受けて行われた。

引用文献

- 1. 小島誠治:分光研究 52 (2003) 69.
- 2. 池祐冶、小島誠治:音響学会誌, 61 (2005) 461.
- 3. 小島誠治他編:固体物理, **35** (2000) 「誘電 体物理の新展開」(特集号).
- S. Kojima and T. Nakamura: Jpn. J. Appl. Phys. 17 (1978) 947.
- 5. S. Tsukada, Y. Hiraki, Y. Akishige, and S. Kojima, Phys. Rev. B **80** (2009) 012102.
- J.-H. Ko, S. Kojima, et al.: Appl. Phys. Lett. 93 (2008) 102905.
- 7. 秋重邦幸、重松宏武、小島誠治:結晶学会誌 48 (2006) 115.
- S. Tsukada and S. Kojima, Phys. Rev. B 78 (2008) 144106.
- 9. 小島誠治:中性子科学会誌「波紋」16 (2006) 44.
- 10. S. Kojima, V. Novikov and M. Kodama, J. Chem. Phys. **113** (2000) 6344.
- Y. Fukawa, S. Kojima, et al., Jpn. J. Appl. Phys. 47 (2008) 3833.
- 12. S. Kojima, Phys. Rev. B47 (1993) 2924.
- S. Kojima and A. Yoshihara, Jpn. J. Appl. Phys. 36 (1997) 2981.
- 14. E. Hahsimoto, S. Kojima, et al., Jpn. J. Appl. Phys. 47 (2008) 3839.
- 橋本英二、青木雄一郎、池祐治、小島誠治: 低温生物工学会誌、54 (2009) 119.
- Y. Ike, S, Kojima et al., J. Mol. Struc. 924 (2009) 157.