Characterizations of C₆₀ Films by Measuring Internal Friction

内部摩擦測定による C₆₀ 薄膜の物性評価

Shota Shimizu^{1‡}, Takeru Miyamoto¹, Kenta Kirimoto² and Yong Sun¹ (¹Depart. Appl. Sci. for Integ. Syst. Eng., Kyushu Inst. Tech; ²Depart. Electri & Electro. Eng., Kitakyushu National Colle. Tech.) 清水翔太^{1‡}, 宮本武瑠¹, 桐本賢太², 孫 勇¹ (¹九工大 工; ²北九州高専 電気電子)

1. Introduction

Due to high symmetry of C₆₀ molecule and weak van-der-Waals interaction between them in crystal phase, solid C₆₀ exhibits various properties with varying temperature. An elastic anomaly of solid C₆₀ at around 160 K has been observed on temperature dependences of the sound velocity and the internal friction. This anomaly is considered to correspond to C₆₀ jumping between inequivalent orientations¹. It is well known that a structural phase transition between sc and fcc appears in C_{60} crystals around 260 K. This phase transition has been revealed in many measurements such as x-ray diffraction², sound velocity^{1,3}, dielectric constant⁴, electrical conductivity⁵, NMR⁶, and thermal conductivity⁷. At temperatures higher than 300 K Vickers hardness of C₆₀ crystal showed an anomalous behavior that the hardness increases with increasing temperature and reached а maximum at around 370 K⁸. The calorimetric measurement also showed a slightly hysteretic properties of specific heat of C_{60} crystal in the temperature range of 310~370 K⁹. Moreover, the properties of C₆₀ crystal at around 420 K were also been studied by several groups. Raman scattering study showed that above 400 K the pentagonal pinch mode changes in frequency and becomes sharp compared with that at room temperature¹⁰. This result indicats that partial orientational order remained above 260 K and only above 400 K the C₆₀ molecules rotate freely and isotropically. Calorimetric measurement showed that there was a peak of heat capacity in C_{60} crystal at 425 K⁹. The internal friction measured by means of the free-free bar apparatus showed that a λ -shaped peak was detected in C₆₀ films at 426 K¹¹. The capacitance and dissipation factor curves have a pronounced feature at 435 K, confirming a phase transition above 400 K¹².

In this study, the C_{60} films are grown on Si substrate by means of evaporating C_{60} powder in

vacuum. The internal friction of the C_{60} /Si sample is measured by reed-vibriting method, in which electrostatic drive and laser displacement sensor are used. We also calculated several crystallographic parameters of C_{60} crystal as a function of temperature. By comparing the theoretical and experimental results, the structural and dynamic properties of C_{60} molecules in crystal phase will be discussed.

2. Experimental

The C₆₀ films were deposited on the Si substrate of $40 \times 5 \times x$ mm³ at 473 K by sublimation in vacuum with residual gas pressure below 2.0×10^{-6} Torr. The thickness of the C₆₀ films on the Si substrate was about 0.5 µm. The internal friction of C₆₀ films was evaluated by subtracting the internal friction of Si substrate from that of the C₆₀ film/Si substrate sample.

3. Results and Discussion

Figure 1 shows temperature dependences of internal friction of C_{60} films in the temperature range of 100~500 K for two frequencies of 224 and 444 Hz. Several peaks of the internal friction are observed. Except the peak 4, they shift to higher temperatures with increasing frequency. The peaks 1 and 2 are attributed to relaxation processes of C_{60} molecule between different orientations in sc lattice. The peak 3 is due to order-disorder phase transition corresponding to sc and fcc structures. The peak 4 at 360 K is from Si substrate, and independent of frequency. The peak 5 is related to a transition between solid and 'liquid' phases because of the evaporation temperature of 460 K for C_{60} crystal.

In order to clarify mechanisms of the internal friction happened in the C_{60} films, we calculated both diameter and nearest-neighbor distance of C_{60} molecules in sc and fcc crystal as a function of temperature. The results obtained are shown in Fig. 2. These values are defined as follows:

 $\delta D(T) = D(T) - D_0$, $\delta d(T) = d(T) - d_0$ where D_0 and d_0 is diameter and nearest-neighbor

sun@ele.kyutech.ac.jp

Fig. 1 Temperature dependences of the internal friction of C_{60} films. The open and closed circles represent the results measured at frequencies of 224 Hz and 444 Hz, respectively.

distance of C₆₀ molecules at 0 K, respectively. Also, we used that $d(T) = 1.4154/\sqrt{2} = 1.001$ nm and D(T) = 0.71 nm at temperature of 270 K. Except a sharp variation at about 260 K, δd is proportional to temperature. On the other hand, there is a minimum of δD at about 150 K. The difference between δd and δD shows several special points at temperature, below 100 K, around 150 K, at 260 K and above 260 K. Below 100 K the decrease in the $\delta d - \delta D$ results in a glassy phase in the C₆₀ film. In the range of $150 \sim 200$ K, the large difference between δd and δD is advantageous to orientational order relaxation of C₆₀ molecules. Around 260 K the sc-fcc structural phase transition can be certainly detected by measuring internal friction. The decrease of the $\delta d - \delta D$ above 260 K, leading to the solid~liquid phase transition, results in a peak around 420 K for internal friction.

4. Conclusion

The internal friction of the C_{60} /Si sample was measured by using reed-vibriting method. Several relaxation peaks were observed on the temperature dependence of internal friction of C_{60} film. These relaxation processes are related to the variation in both the diameter and the nearest-neighbor distance of C_{60} molecules in crystal phase.

Acknowledgment

This work was partially supported by Program of Research for Promotion Technological Seeds (B), Japan Science and Technology Agency (JST).

Fig. 2 The diameter (δD) and the nearest-neighbor distance (δd) of C₆₀ molecules in sc and fcc crystal phases as a function of temperature.

References

- X. D. Shi, A. R. Kortan, J. M. Williams, A. M. Kini, B. M. Savall and P. M. Chaikin: Phys. Rev. Lett. 68 (1992) 827.
- P. A. Heiney, J. E. Fischer, A. R. McGhie, W. J. Romanow, A. M. Denenstein, J. P. McCauley, A. B. Smith and D. E. Cox: Phys. Rev. Lett. 66 (1991) 2911.
- S. Hoen, N. G. Chopra, X. D. Xiang, R. Mostovoy, Jianguo Hou, W. A. Vareka and A. Zettl: Phys. Rev. B 46 (1992) 12737.
- G. B. Alers, B. Golding, A. R. Kortan, R. C. Haddon and F. A. Theil: Science 257 (1992) 511.
- C. Wen, J. Li, K. Kitazawa, T. Aida, I. Honma, H. Komiyama and K. Yamada: Appl. Phys. Lett. 61 (1992) 2162.
- R. Tycko, G. Dabbagh, R. M. Fleming, R. C. Haddo, A. V. Makhija and S. M. Zahurak: Phys. Rev. Lett. 67 (1991) 1886.
- N. H. Tea, R. C. Yu, M. B. Salamon, D. C. Lorents, R. Malhotra and R. S. Ruoff: Appl. Phys. A 56 (1993) 219.
- M. Tachibana, M. Michiyama, K. Kikuchi, Y. Achiba and K. Kojima: Phys. Rev B 49 (1994) 14945.
- N. A. Fortune, K. Murata, F. Iga, Y. Nishihara, K. Kikuchi, S. Suzuki, I. Ikemoto and Y. Achiba: Physica C 185-189 (1991) 425.
- Y. Hamanaka, S. Nakashima, M. Hangyo, H. Shinohara and Y. Saito: Phys. Rev. B 48 (1993) 8510.
- 11. F. Yan and Y. N. Wang: Appl. Phys. Lett. **73** (1998) 476.
- 12. J. S. Su, Y. F. Chen and K. C. Chiu: Appl. Phys. Lett. **75** (1999) 1607.