Analysis of SAW Resonator on SiO₂/Al/LiNbO₃ Structure by using FEM/SDA

FEM/SDA を用いた SiO₂/Al/LiNbO₃構造 SAW 共振器の解析 Hiroyuki Nakamura^{1†}, Hidekazu Nakanishi¹, Rei Goto¹, Ken-ya Hashimoto² and Masatsune Yamaguchi² (¹Panasonic Electronic Devices Co., Ltd., ² Graduate School of Engineering, Chiba University)

中村弘幸¹⁴,中西秀和¹,後藤令¹,橋本研也²,山口正恆²(¹ⁿ ナソニック エレクトロニックデバイス㈱,²千葉大 学大学院)

7000

1. Introduction

Because of their low insertion loss, high out-of-band rejection and high power durability, miniature surface acoustic wave (SAW) duplexers are widely used in mobile phones based on the universal mobile telecommunication system (UMTS). Substrate materials mainly limit and determine the performance of SAW duplexers; for their application to Band I with large pass-band widths and wide frequency separation between the Tx and Rx bands, a larger coupling coefficient K^2 is of primary importance. For one of the large K^2 solutions, a SAW filter on a Cu/LiNbO3 structure was discussed ¹⁾. In spite of its large K^2 , however, a LiNbO₃ substrate has poor TCF. Although SiO₂ film / thin Al electrode²⁾ and flat SiO₂ film / Cu electrode³⁾ / LiNbO₃ substrate structures were reported for improved TCF, we have experimentally developed a shape controlled SiO₂ film/Al electrode / LiNbO3 substrate structure for Band I duplexer. This is because the structure possesses large K^2 with improved TCF and is effective in the suppression of Rayleigh-mode spurious responses⁴). In this paper, we report the analysis of a SAW resonator on the SiO₂ film / Al electrode / LiNbO₃ structure by using FEM/SDA.

2. Analysis of SiO₂/Al/LiNbO₃ structure

First, we analyzed a SAW resonator on a flat SiO₂/Al/LiNbO₃ structure by using FEM/SDA⁵⁻⁷⁾. **Fig.1** shows the K^2 and SAW velocity v_a at anti-resonance as a function of the SiO₂ thickness *h*. Here, the cut angle of Y-cut LiNbO₃ is 5°, and the Al thickness is 0.08 λ . The value of *h* should be more than 0.4 λ to make the SAW velocity smaller than the slow shear wave velocity in LiNbO₃ shown by the dashed line. However, K^2 also decreases with an increase in the SiO₂ thickness of 0.4 λ . For Band I applications, K^2 of 0.08 is definitely too small.

0.25

Fig. 1 K^2 and v_a as a function of *h* on a flat SiO₂/Al/LiNbO₃ structure.

The analysis on the flat $SiO_2/Al/LiNbO_3$ structure shows that it is difficult to obtain large K^2 with suppressed bulk wave radiation.

Next, a similar analysis was made on a non-flat SiO₂/Al/LiNbO₃ structure, where the non-flat SiO₂ shape is expected to reduce the SAW velocity by the grating effect. Fig.2 shows K^2 and the SAW velocity at anti-resonance as a function of the convex height d for SiO₂ deposited above IDT fingers (see the insertion in Fig. 3). Here, the cut angle of Y-cut LiNbO3 is 5°, the Al thickness is 0.08λ , and the SiO₂ thickness between two IDT fingers is 0.2 λ . As shown in Fig.2, the value of v_a monotonically decreases with an increase in d. In particular, when d is increased up to 0.08λ , v_a already becomes sufficiently smaller than the slow shear wave velocity in LiNbO3 shown by the dashed line. It is confirmed that the non-flat SiO₂ shape is effective in reducing the SAW velocity. Furthermore, K^2 of 0.153 (for $d=0.08\lambda$) is large enough for Band I applications. It is suggested that the non-flat SiO₂/Al/LiNbO₃ structure may be useful for obtaining large K^2 with suppressed bulk wave radiation.

nakamura.hiroyuki@jp.panasonic.com

Fig. 2 K^2 and v_a as a function of *d* on a non-flat SiO₂/Al/LiNbO₃ structure.

3. Experimental result of non-flat SiO₂ structure

Having controlled the SiO_2 shape⁴, we have developed a Rayleigh-mode spurious suppression technique. In practice, the SiO₂ becomes almost in a shape of a trapezoid. So, we expanded FEM/SDA to process the SiO₂ film of a shape of a trapezoid. Fig.3 shows the simulated and experimental results of the normalized admittance of a SAW resonator fabricated on the non-flat SiO₂/Al/LiNbO₃ structure. In the figure, the SiO_2 shape ratio SR is defined as the ratio of the upper to lower bases of the trapezoidal SiO₂ film region. As shown in Figs. 3(a) and (b), the Rayleigh-mode spurious response observed between the resonance was and anti-resonance frequencies in both simulated and experimental results. In Fig.3(c), where SR was reduced to 0.38, the Rayleigh-mode spurious response was no more observed. The experimental the result also confirms that admittance characteristic at anti-resonance was not badly affected by bulk wave radiation. Furthermore, K^2 was experimentally estimated to be about 0.15. It is concluded, therefore, that the non-flat SiO₂/Al/LiNbO₃ structure is able to support high coupling SAW of SH type with suppressed bulk wave radiation.

4. Conclusion

We made an analysis of a SAW resonator on a $SiO_2/Al/LiNbO_3$ substrate structure by using FEM/SDA. For the SAW resonator on a flat $SiO_2/Al/LiNbO_3$ structure, it is difficult to obtain large K^2 with suppressed bulk wave radiation. We showed that the non-flat $SiO_2/Al/LiNbO_3$ structure is useful for obtaining large K^2 with suppressed bulk wave radiation. The experimental result of the SAW resonator fabricated on the non-flat $SiO_2/Al/LiNbO_3$ structure was in good agreement with the simulation.

(a) *SR*=*A*/*B*=0.78

(b) *SR*=*A*/*B*=0.58

Fig. 3 Simulated and experimental results of a SAW resonator on a non-flat $SiO_2/Al/LiNbO_3$ structure.

References

- 1. K. Hashimoto, H. Asano, T. Omori, and M. Yamaguchi, Jpn. J. Appl. Phys. 43 (2004) 3063.
- K. Yamanouchi, T. Ishii, Jpn. J. Appl. Phys. Vol. 41 (2002) pp. 3480–3482
- M. Kadota, T. Nakao, K. Nishiyama, S. Kido, M. Kato, R. Omote, H. Yonekura, N. Takada, and R. Kita, Jpn. J. Appl. Phys. 46 (2007) 4714.
- H. Nakamura, H. Nakanishi, T. Tsurunari, K. Matsunami, Y. Iwasaki, K. Hashimoto, and M. Yamaguchi, Jpn. J. Appl. Phys. 47 (2008) 4052.
- 5. K. Hashimoto, G. Zheng, M. Yamaguchi, Proc. IEEE Ultrasonic Symp., 1997, p. 279.
- 6. K. Hashimoto, T. Omori, M. Yamaguchi, Proc. IEEE Ultrasonic Symp., 2000, p. 307.
- 7. K. Hashimoto, T. Omori, M. Yamaguchi, Proc. IEEE Ultrasonic Symp., 2007, p. 711.