Development of High Coupling Coefficient SAW Resonator on Ta₂O₅/Al/LiNbO₃ Structure

Ta₂O₅/Al/LiNbO₃構造を用いた高結合係数 SAW 共振器の開発 Hidekazu Nakanishi[‡], Hiroyuki Nakamura, and Rei Goto (Panasonic Electronic Devices Co., Ltd.)

中西秀和*, 中村弘幸, 後藤令 (パナソニック エレクトロニックデ・ハ イス(株))

1. Introduction

The surface acoustic wave (SAW) duplexer is a key device of mobile phones for miniaturization and high performances. In the universal mobile telecommunication system (UMTS), Band IV system has the largest duplex gap of 355 MHz. Therefore, to realize the duplexer with small size, low insertion loss, and high attenuation, the SAW resonator having very high coupling coefficient (K^2) is required. Recently, a combination of the low cut angle Y-cut LiNbO₃ substrate and SiO₂ film¹⁾ and a combination of a 15°YX-LiNbO3 substrate and a Cu electrode²⁾ for wideband applications are reported. For the duplexers with wide duplex gap, a flattened SiO₂ film /Cu electrode/LiNbO₃ structur³⁾ shape controlled SiO_2 and а film /A1 electrode/LiNbO₃ structure^{4,5)} were reported. On the other hands, the approach of using Ta_2O_5 film has never been reported. In this report, we developed the high K^2 SAW resonator on a Ta₂O₅/Al/LiNbO₃ structure.

2. Structure of SAW resonator with Ta₂O₅ film

We employed the 1-port resonator as a test device. **Fig.1** shows a cross-sectional view of the Ta₂O₅/Al/LiNbO₃ structure. Above the IDT electrodes, the Ta₂O₅ film is deposited by RF sputtering. The piezoelectric substrate is a 5°YX-LiNbO₃ substrate. The IDT electrodes consist of Al-alloy. The Al electrode thickness is 160 nm (0.08 λ). Regarding the SAW resonator structure, a pitch of the IDT electrodes and the reflector electrodes are 150 and 30, respectively. And, aperture length is 25 µm.

3. Characteristics of SAW resonator with Ta_2O_5 film

Fig.2 shows the admittance (Y_{11}) of SAW resonator dependence of Ta₂O₅ thickness. Some spurious responses appearing between the resonant and the antiresonant frequencies are due to transverse-mode in Fig.2. **Fig.3** shows the dynamic range of Y_{11} as a function of the Ta₂O₅ thickness. **Fig.4** shows the phase velocity at resonant and antiresonant frequency as a function of the Ta₂O₅ thickness. The phase velocity is calculated by multiplying resonant or antiresonant frequency by IDT pitch on each resonator. And, dashed-line is the phase velocity of slow shear wave of the LiNbO₃ substrate.

As shown Fig.2, the characteristic of SAW resonator without Ta₂O₅ film degrades. Especially, an attenuation at antiresonant frequency degrades. And, as shown Fig.3, the dynamic range of Y_{11} is very small. On the other hand, the characteristic of SAW resonator with Ta₂O₅ film does not degrade at antiresonant frequency. Because, as shown Fig.4, when the Ta₂O₅ thickness becomes more than 0.0125 λ , the phase velocity at antiresonant frequency becomes slower than the phase velocity of slow shear wave of the LiNbO₃ substrate. So, the bulk radiation does not occur. However, the dynamic range of Y_{11} decreases as the Ta₂O₅ thickness increases. Therefore, the optimum thickness of Ta₂O₅ is determined in views of the dynamic range of Y_{11} and the Rayleigh-mode spurious response.

Fig. 3 Dynamic range of Y_{11} as a function of the Ta₂O₅ thickness

Fig. 4 Phase velocity at resonant and antiresonant frequency as a function of the Ta₂O₅ thickness

3. K^2 and Rayleigh-mode spurious response of SAW resonator dependence of the Ta_2O_5 thickness

We investigated the level of Rayleigh-mode spurious response and the K^2 dependence of the Ta₂O₅ thickness. **Fig.5** shows the dynamic range of Rayleigh-mode spurious response as a function of the Ta₂O₅ thickness. **Fig.6** shows the K^2 as a function of the Ta₂O₅ thickness. **Fig.6** shows the K^2 as a function of the Ta₂O₅ thickness. As shown Fig.5, the dynamic range of Rayleigh-mode spurious response becomes zero when the Ta₂O₅ thickness is 0.025 λ . In addition, the dynamic range of Y_{11} has sufficient value. And, as shown Fig.6, although the K^2 decreases as the Ta₂O₅ thickness increases, the K^2 is very high of 23%. We have cleared the optimum Ta₂O₅ thickness to realize the high performance SAW resonator without Rayleigh-mode spurious response.

4. Conclusion

We have established the SAW resonator on $Ta_2O_5/Al/5^{\circ}YX$ -LiNbO₃ structure for wide duplex

Fig. 5 Dynamic range of Rayleigh-mode spurious response as a function of the Ta_2O_5 thickness

Fig. 6 K^2 as a function of the Ta₂O₅ thickness

gap application. The SAW resonator shows the excellent performance with high K^2 . The SAW resonator could be applied sufficiency for Band IV duplexer. Moreover, the density of Ta₂O₅ is higher than that of SiO₂. So the Ta₂O₅ thickness, which the bulk radiation does not occur, is thinner comparing with the SiO₂ thickness.

References

- 1. K. Yamanouchi, Y. Satoh, H. Isono and D. Kawasaki: Jpn. J. Appl. Phys. 44 (2005) 4520.
- 2. K. Hashimoto, H. Asano, T. Omori, and M. Yamaguchi: Jpn. J. Appl. Phys. 43 (2004) 3063.
- M. Kadota, T. Nakao, K. Nishiyama, S. Kido, M. Kato, R. Omote, H. Yonekura, N. Takada and R. Kita: Jpn. J. Appl. Phys. 46 (2007) 4714.
- H. Nakamura, H. Nakanishi, T. Tsurunari, K. Matsunami, Y. Iwasaki, K. Hashimoto and M. Yamaguchi: Jpn. J. Appl. Phys. 47 (2008) 4052.
- Hidekazu Nakanishi, Hiroyuki Nakamura, Tetsuya Tsurunari, Hiroki Kamiguchi, Yosuke Hamaoka, Rei Goto, and Yukio Iwasaki: Jpn. J. Appl. Phys. 48 (2009) 07GG04.