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1. Introduction 
In 1971, H.H. Demarest demonstrated that 

the second order elastic constants Cijkl of a 
rectangular parallelepiped shape sample can be 
obtained from inverse analysis to free vibration 
resonance frequencies.1  Following to Demarest, 
several researchers contributed further development 
of the method.2  Nowadays it is called resonant 
ultrasound spectroscopy (RUS).3  The RUS 
technique has been applied succesfully to several 
kinds of materials.  However, to the authors’ 
understanding, the theory of RUS is still in its 
progress and further developments are required.  
The purpose of this work is to extending the theory 
into a general framework of nonlinear elasticity.  
For the sake of simplicity, we employ an 
one-dimensional elastic string model.  While the 
model is rather simple, yet it includes theoretical 
developments that should be required on a 
formulation in higher dimensions. 

2. Variational Formulation 
Let us define the one-dimensional nonlinear 

elastic string by Ω = R .  The Ω
undergoes a pure longitudinal deformation 

.  Then, the kinetic energy density  due to 
the deformation  is written as 

Where the ρ is mass-density of the Ω and assumed 
to be uniform when the deformation is zero;  = 0 
for all  in Ω.  The represents the 
deformation velocity.  On the other hand, the strain 
energy density due to the deformation  can be 
expressed by a Taylor series expansion such that 

Where  and .
The denotes deformation gradient.  
Fig. 1 plots the strain energy density  with repect 
to the deformation gradient .  The domain of 
the function  is set to be .

Figure 1.  Strain energy density  plotted as a function 
of the deformation gradient .  The horizontal and 
vertical axes are normalized by the  and .

From the kinetic and strain energy densities, 
we can express the lagrangian density of the elastic 
string as .  Integration of the  on the 
fixed domain and on a certain time 
interval  yields a functional of the action 
integral

According to the principle of least action, an actual 
deformation  must satisfy the stationary condition; 
δ  = 0.  This is the variational formulation for the 
acoustic resonance of Ω.  Note that the condition 
δ  = 0 poses a variable domain problem since the 
domain on  is not fixed in general. 

3. Direct Analysis by the Ritz Method 
In order to solve the variational problem we 

employ a direct analysis which is based on the Ritz 
method.  More precisely, we expand the 
deformation function u by complex Fourier series 
such that, 

The ω represents the resonance frequency.  The 
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function u satisfies the natural boundary conditions
which are required at end points of the domains.  
In order to prevent a trivial solution, we impose a 
subsidiary condition; .  Inserting 
the  into the  and taking stationary conditions 
given by Ritz, it end up with  a set of nonlinear 
simultaneous equations.  This problem has been 
solved numerially by using the Newton method. 

4. Results and Discussion 
Fig. 2 show the amplitude (or  norm) 

dependence of resonance frequencies obtained from 
the first three vibration modes.  At the lowest 
amplitude, ω are close to the linear case solutions; 
ω1st. = π/2, ω2nd. = π and ω3rd.. = 3π/2.  However, 
due to the nonlinearities of the system, they show 
monotonic decreasing with increasing in amplitude.  
To our surprise, these behaviors are similar to the 
temperature dependence of resonance frequency 
observed in low temperature RUS experiments. 

Figure 2.  Amplitude dependence of resonance 
frequency for the first three resonant modes. 

Fig. 3 show time dependence of the 
longitudinal deformation u obtained from the first 
three vibration modes.  While overall vibration 
patterns are close to those of the linear ones, we 
could see some prominent nonlinear features.  
First of all, the vibration patterns are no more 
symmetric with respect to time.  For instance, 
deformation amplitude of the first mode at  = 1 is 
1.01 while those after the half period is only -0.88.  
The same apply to the second and third modes.  

The second mode lost the symmetry in space either; 
there is no mirror symmetry on the  axis in any .
Secondly, there is no specific time  at which all 
deformation in Ω vanishes.  This is also a crucial 
difference between the previous linear and present 
nonlinear system.  The last feature we would like 
to mention is seen at x = ±1/2 in the second mode 
and x = ±2/3 in the third.  In the nonlinear system, 
these points are no longer the nodal point and 
slightly oscillating with the frequencies of 2ω.

Figure 3.  Resonance vibrations for the first three 
resonant modes. 

5. Conclusions 
In this study, we have investigated free 

vibration acoustic resonance of one-dimensional 
nonlinear elastic string Ω.  Resonant states of the 
string have been formulated within a framework of 
the calculus of variation and its stationary 
conditions have been solved numerically by using a 
direct analysis which is based on the Ritz method.  
The Ω showed prominent nonlinear features such as 
amplitude dependence of resonance frequencies, 
symmetry breaking in the vibration modes, and 
excitation of high frequency modes. 
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