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1. Introduction

In order to put the thermoacoustic system to 
the practical use, it is necessary to improve the 
efficiency of the energy conversion between sound 
and heat in thermoacoustic phenomenon [1].  For 
the efficiency improvement, it is important to 
analyze the sound field in a thermoacoustic tube.  
In the prior investigation, the sound field is 
numerically analyzed by the FDTD method [2].  It 
is, however, difficult to analyze the steady-state 
standing wave field in the thermoacoustic tube 
because the FDTD method is a time-domain 
method.

In this paper, the steady-state sound field in a 
thermoacoustic tube is numerically analyzed in 
frequency domain using the finite element method 
(FEM) [3].  Although the thermoacoustic field is 
nonlinear and isothermal, a linear and adiabectic 
model is proposed in this paper, in which the sound 
energy flow is only considered.  In the model, the 
energy conversion from heat to sound is modeled as 
sound source and one from sound to heat as loss 
related with tube wall.  Some numerical 
demonstrations are made for two-dimensional 
standing wave field in a linear tube with lossy wall. 

2. Finite element model

Figure 1 shows the two-dimensional finite 
element model for the steady-state field in the 
thermoacoustic tube.  The sound field Ω  is 
assumed to be linear without loss.  The boundary 
conditions are given as follows

∂p
∂n

= q̂  (on Γd ) (1)

p
u
= Zw  (on Γw ) (2)

where p is sound pressure, u is particle velocity, 
∂ /∂n  indicates the derivative with respect to the 
normal direction. q̂  is flux corresponding to the 
vibration velocity of the sound source, and Zw  is 
acoustic surface impedance of wall.  The energy 
flows in sound field through source Γd  and flows 
out through Γw  as a loss.  

Fig.1 Finite element model.

An acoustic tube of 3 m in length and 4 cm in 
width is assumed in which the upper half domain is 
only considered for the analytical region.  The 
sound field is divided into 1500 × 80 triangular 
elements of the first order.  The left end of the 
tube is driven with uniform velocity of 2.45 mm/s 
and another end is rigidly terminated.  The sound 
speed of air is c0=340 m/s and density is ρ0=1.2 
kg/m3.  The normalized acoustic surface 
impedance of the tube wall is assumed to be 
Zw = Zw /(ρ0c0)=400.  Figure 2 (a) shows a stack 
of honeycomb like structure with many channels, 
and (b) shows a finite element model of the stack in 
which single channel is assumed with low acoustic 
impedance of Zw = 38.5 .  The model of phase 
adjuster (PA) is same as the stack.  

Fig.2 Model of stack and phase adjuster.

4. Numerical experiments
 4.1 Standing wave field with stack

Figure 3 shows distributions of sound 
pressure and particle velocity at 114.1 Hz of the 
second resonant frequency.  In the figure, the solid 
lines indicate the results with stack, and the broken 
lines without stack. The resonant frequency hardly 
changes in the presence of the stack. The amplitude 
decreases, and the node in front of the stack 
changes in the presence of the stack.  Figure 4
shows the sound intensity distributions.  The 
sound intensity monotonically decreases without 
the stack, while it rapidly decreases between the 

－ 529 －

3P-37



front and the rear of the stack.  The difference of 
sound intensity ΔI  is equivalent to the outflow of 
the acoustic energy from the stack.  The difference 
ΔI  is converted into the thermal energy if the tube 
acts as a thermoacoustic system.  The conversion 
efficiency η = ΔI / I0  in this case is 43.4%, where 
I0 is the input intensity at the source.

Fig. 3 Distributions of sound pressure and particle 
velocity.

Fig. 4  Distributions of sound intensity.

Figure 5 shows the relation between the 
position of the stack and the efficiency.  The 
maximum efficiency is obtained at the position of 
the maximum sound pressure.  

Fig. 5 Relation between efficiency and the position 
of the stack

  4.2 Effect of phase adjuster

Figure 6 shows the distributions of sound 
intensity with the phase adjuster (PA), which is 
located behind 0.3m from the stack.  The intensity 
is slightly changed in the presence of PA.  Figure 
7 shows the relation between the position of PA and 
the improvement ratio of the energy conversion 
efficiency η /η0 , where η0  is the efficiency 
without PA.  In the figure, the internal diameter of 
PA has been changed with 10 mm, 20 mm, and 30 
mm, respectively.  The efficiency is improved 
when PA is located near the stack, and PA with 
narrower internal diameter is located.  The 
efficiency improvement of several ten % is reported 
in the experiments of the loop tube system [4], 
while the effect of PA is slight in this numerical 
result.  This is because the effect of PA repeatedly 
applied in the loop tube.  

Fig. 6 Distribution of sound intensity with PA.

Fig. 7  Relation between efficiency improvement 
and position of PA.
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