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1. Introduction 

Perfectly matched layers1-5) (PMLs) for 
elastic waves in solids are among the popular 
absorbing boundary conditions for trancating the 
computational domain of open regions. 
Mathematical models of PMLs, which are given by 
differential equations and boundary conditions, are 
exactly perfect matching medium. In numerical 
models, however, discretizing PMLs changes phase 
velocities of propagating waves and generates 
reflection waves from the PML region.5)

Furthermore, approximation of infinite regions with 
finite thick layers also generates reflection waves 
from the PML terminal.5) Estimating matching 
performance and optimizing parameteres of PMLs 
are required before solving problems. 
 In this paper, the dependence of PML performance 
on attenuation parameters of finite element (FE)  
models in the frequency range is presented. We 
confirm that numerical results of FE-models of 
PMLs for elastic waves may be predicted by 
discretized wavenumber analysis.  

2. Basic equations and Numerical procedure 

We consider plane elastic waves 
propagating in a half infinite isotropic solid 
attached with its PML backed with a vacuum as 
shown in Fig.1. Here  is the incident angle, L is 
thickness of the PML,  and  (m=0, 1, 2) are                  
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wave vectors of the incident wave and reflected 
wave, respectively. When the stiffness component 
of an isotropic solid ijklC  is given by      

)( jkiljlikklijijklC  where 

are Lame constants and  is Kronecker’s delta, 
the stiffness components of its PML PML

ijklC  is: 
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Here )2,1,0(isi is a coordinate stretching factor 

of xi direction.2) The mass density of the PML 
PML  is given by 210

PML sss .

For examining absorbing performance of 
PMLs in the x2 direction, taking assumptions of 
uniform field distributions along x0-direction and no 
variation of fields along x1-direction, we have a 
differential equation in one variable x2. In this case, 
we may choose the coordinate stretching factor as 
follows:
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110 ss     (4) 
where j is the imaginary unit. 
 In the PML, the differential equation 
derived from Newton’s equation of motion and 
constitutive equation is: 
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where iu is the component of the particle 
displacement in the ix  direction. 
 In the half isotropic solid, the field 
distribution, components of the particle 
displacement and stress, can be expressed by 
superposition of incident and reflected plane waves: 
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Fig. 1 Reflection on the plane boundary between an 
isotropic solid and its PML. 
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Where nk  and nu is the wave vector and the 
particle displacement vector that are given by the 
solutions of Christoffel equation for the isotropic 
solid.

 Boundary conditions at the interface of 
isotropic solid and PML, x2=0, are the nonslip 
condition and the continuous condition of the 
normal component of the stress: 
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where
.ˆˆ iii sxxs            (9) 

At the terminal of PML, x2=L, the boundary 
condition is: 
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 Using the boundary condition and 
following relations at x2=0,
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where mnnmn uxkjk )ˆ( 2 and subscripts m and 
n indicate x0-, x1-, x2-component of the coordinate 
and P-, SV- and SH-wave, respectively, we get a 
Robin condition. Hence applying finite element 
procedure to the PML region only, we can 
determine value of the particle displacement 

)0(u , and compute the reflection coefficient nR
by eqs. (7), (8), (11), (12). 

3. Reflection coefficients calculated from 
discretized wavenumber 

 Numerical dispersions due to the finite 
line element approximation of the propagating 
fields in the PML, as shown in Fig.2, change the 
wavenumbers predicted by differential equations to 
discretized wavenumbers6) as follows: 
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where kL and kS are the intrinsic wavenumber 
of P- and SV-wave in the isotropic region. 

Identification of the structure shown 

Fig.1 as a layered structure, we can compute 
the reflection coefficient by the discretized 
wavenumber. 

Fig.2 Line element with (n+1)-nodes

4. Computed Results 

Fig.3 shows the computed results of the 
reflection coefficient dependence on h/  for 
Poisson ratio =0.3, 1.0)( 22 xs I , n=1, 0
and normalized thickness 24Lks . Here is 
the wavelength of incident SV-wave in the 
isotropic region. We confirm that the results 
computed by discretized wavenumber ( , ) agree 
with those by FE method (   ,---). 
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Fig. 3 Reflection coefficients on the plane boundary 
between an isotropic solids and its PML. 
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