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1. Introduction 

The quantum mechanics is a fundamental 
physical theory and has been utilized widely for 
understanding various physical phenomena. 
     According to J. J. Sakurai’s textbook, the 
quantum theory includes the classical theory within it, 
describing as the following: “It (quantum physics) 
starts with a framework so unlike the differential 
equations of classical physics, yet it contains classical 
physics within it. It provides quantitative predictions 
for many physical situations, and these predictions 
agree with experiments. In short, quantum mechanics 
is the ultimate basis, today, by which we understand 
the physical world.” 1) “Classical mechanics can be 
derived from quantum mechanics, but the opposite is 
not true.” 2) Therefore, it is desirable to utilize the 
concept of quantum theory widely also in the field of 
ultrasonic electronics. 
     In the field of engineering (for example, 
control engineering), the “classical theory” means the 
framework of analysis mainly in the frequency 
domain, based on Newtonian mechanics and the 
treatment of lumped circuit parameters. For example, 
in dealing with the characteristics of the 
electromechanical vibration system in which the 
elastic phenomenon interacts with the dielectric 
phenomenon, the classical framework can calculate 
the relationship between electrical resonance 
frequencies and antiresonance frequencies, where the 
existence of lumped-parameter dielectric capacitance 
components is inevitable.  
     However, as pointed out in ref. 3, this classical 
framework has some problems when the analysis is 
performed in the time domain; that is, when transient 
or impulse response of the system is calculated. 
Unfavorable results are caused by the existence of 
dielectric capacitance and the dissipation (loss). 
Especially, the difficulty caused by the existence of 
dissipation suggests the application limitations of 
classical Newtonian mechanics. 
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    In order to settle these difficulties, the 
distributed-parameter-based treatment of vibration 
analysis has been developed without using any 
lumped parameter elements,3-13) in which the “energy 
mode” has a kind of phase factor, propagates and 
interferes with each other in a manner of probabilistic 
superposition. In this method, the dissipation can be 
treated reasonably. The concept of energy mode is 
derived from Dirac’s “complex dynamical variable” 
14), in which its magnitude is proportional to the 
square root of stored energy. The interaction process 
between the elastic and dielectric phenomena is 
treated by considering non-unitary processes (with 
dissipation) between the elastic energy mode and 
dielectric energy mode, while the “conventional” 
quantum theory usually treats unitary processes.  
     In this study, the similarity and difference 
between the “conventional” quantum theory and 
author’s method are discussed from the viewpoint of 
analyzing the electromechanical coupling system.  

  
2. Comparison to Conventional Quantum 
Mechanics  

In quantum mechanics, a state vector (ket 
vector) changes as  

 
    |a, t⟩ = U(t, t0) |a, t0⟩                 (1) 
 
in the Schrödinger picture (not Heisenberg picture), 
where |a, t0⟩ is an initial state vector at time t0, U(t, 
t0) is a unitary matrix for the time evolution from 
time t0 to t, and |a, t⟩ is the state vector at time t. 
(By considering the time evolution of U in 
infinitesimal time, Schrödinger equation can be 
derived.2)) 
     Similar formulation is adopted to treat the 
energy mode in the present study. The energy mode 
η  is calculated as 
     
  η  = Σall paths Kout (A0 + RA0 + R2A0 + …) Kin η0 

                                                       (2) 

1P1-6

－ 29 －

Proceedings of Symposium on Ultrasonic Electronics, Vol. 35 (2014) pp. 29-30 
3-5 December, 2014



in an electromechanical coupling vibration system, 
where η0 is an initial seed value of energy mode, 
Kin and Kout are matrices for input and output 
processes, respectively, A0 and R are non-unitary 
matrices of initial term and common ratio, 
respectively, of the infinite geometric series, which  
reflect the boundary condition of the system, and 
the summation is taken over all possible spatial 
paths for the energy mode in a probabilistic manner.  
     The infinite geometric series in eq. (2) 
corresponds to the summation of energy mode over 
all time (t = 0 to ), which means that time is 
indefinite. From the uncertain principle between 
time and frequency, indefinite time gives a definite 
frequency, and therefore, eq. (2) provides 
characteristics of the system at a definite frequency. 
From the poles in eq. (2), the transient or impulse 
response of the system in the time domain is 
obtained.3) Some interaction coefficients between 
the elastic and dielectric modes are included in A0 
and R. In eq. (2), the dissipation in the system can 
be dealt with reasonably. If the dissipation did not 
exist, the infinite series in eq. (2) would diverge to 
infinity, which does not express the real physical 
situation. 
     The formulation with regard to the 
summation over all spatial possible paths in eq. (2) 
is similar to Feynman’s formulation of path integral. 
The superposed phase factor in Feynman’s 
formulation has the form of  
 
    exp(jS/ ),                          (3) 
 
where  is Planck’s constant h over 2π (Dirac’s 
constant), S is the time integral of Lagrangian, and j 
is the imaginary unit. 
    In the method adopted in this study, the 
superposed energy modes have the following forms 
of phase factor: 
 
  Elastic mode:  exp(−jωT− αe),           (4) 
 
  Dielectric mode: exp(−j0 − αd) = exp(−αd),  (5) 
 
where ω is an angular frequency of the energy 
mode as a wave, T is propagation time for the 
elastic mode to pass through a spatial domain in the 
system, and αe and αd are attenuation factors of 
elastic and dielectric modes, respectively, on the 
spatial domain.  
    The superposition of elastic mode provides 
resonance characteristics in the frequency domain, 
and its spatial distribution corresponds to an 
eigenvector of resonance mode. On the other hand, 
the superposition of dielectric mode provides 
non-resonance characteristics and its spatial 
distribution has a form that is composed of some 
spatial delta functions; that is, dielectric energy 

mode behaves in the way it concentrates in 
infinitely small areas in the system at any and all 
frequencies. The interaction process between such 
elastic and dielectric modes provides physically 
reasonable results.4) The forms in eqs. (4) and (5) 
do not appear in the “conventional” quantum 
mechanics. 
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