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1. Introduction 

The staggered grid with the collocated grid 
point of velocities (SGCV) was presented for the 
finite-difference time-domain (FD-TD) method to 
model propagation of elastic waves in anisotropic 
solids1), and was applied to resonance frequency 
analysis of a Lamé mode resonator on an isotropic 
solid to demonstrate the simply imposed boundary 
conditions on free surfaces2, 3). The results showed 
that accuracy of the SGCV was comparable to the 
ones with the conventional staggered grid4) with the 
stress-imaging technique5, 6). 

For resonant mode analysis, particle velocity 
and stress fields are either symmetric or 
antisymmetric with respect to axes of symmetry. 
Although imposing appropriate symmetric 
boundary conditions on axes of symmetry can be 
effective to launch a targeted mode, the symmetry 
boundary condition has not been implemented in 
the FD-TD method with the SGCV. 

In this paper, symmetric boundary condition 
is implemented in the FD-TD method with the 
SGCV, which uses a scheme of second-order 
accuracy in the time and spatial differences. 
Bi-linear interpolation with four-adjoining grids is 
used to evaluate the gradients of particle velocity on 
grids just inside the free-surface boundaries2, 3). 
Numerical results show the validity of the 
symmetric boundary condition. It is also shown that 
the computational time is reduced due to the 
reduction of computational domain. 
 
2. FD-TD models with the Symmetric Boundary 
Condition 

We consider a two-dimensional square Lamé 
mode resonator with a side length of L on an 
isotropic solid. The resonator is placed on the x-y 
plane of a Cartesian coordinate, whose origin is 
taken on the center of the resonator. The resonator 
is discretized with square SGCVs with side a length  
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of  as shown in Fig. 1. 
Fig. 2 shows FD-TD models of the 

resonators discretized with the SGCV. Symmetric 
boundary conditions are imposed on the symmetry 
axes and the free surface boundary conditions are 
imposed on the other edges of the resonator. In Fig. 
2 (a), the symmetry axis is  so that the 
computational domain is reduced to the half of the 
resonator: . In Fig. 2 (b), the 
symmetry axes are  and  so that the 
computational domain is reduced to the quarter of 
the resonator: .The particle velocity 
components,  and , located on the 
lines of  and  are added to 
implement the symmetric boundary condition 
without a modified FD-TD procedure.  

The symmetric boundary conditions for 
symmetric modes are expressed as 

 and  for 
the boundary on  and 

 and  for 
the boundary on . Note that for the stress 
components, the standard time-updating procedure2) 
with these external particle velocity components 
automatically satisfies their symmetry conditions. 

 
3. Numerical Results 

We consider the resonator with Poisson’s 
ratio of 0.25 and with the fundamental resonance 
frequency, , of 1 MHz2). In this paper the 
Courant number is taken as , 
where , and  are, respectively, the phase 
velocity of the P-wave in the solid, and the time 
interval. 

To analyze the resonance frequency, a 
vibration is given on a , 
and the time response is observed on . 
The vibration is a sine-modulated Gaussian pulse 
with the center frequency  given as 

, where  is a time step number and 
 is a number of cells in the x- and 

y-directions. The FD-TD calculations were carried 
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Fig 1 A unit cell of the SGCV. 

 
Fig. 3 Extracted normalized resonance frequencies 
with the whole-, half-, and quarter-size of 
computational domains. Note that results for all 
models are identical. 

 
Fig. 2 A Lamé mode resonator discretized with the 
SGCV. The symmetric boundary conditions are 
imposed for analysis with (a) half and (b) quarter 
regions 

 
Fig. 4 Normalized computational time for whole-, 
half-, and quarter-size of computational domain as a 
function of . Note that the total number of 
unknowns is in . 

out for three models 1) with the symmetry 
condition on  [half domain, Fig. 2 (a)], 2) 
with the conditions on  and  [quarter 
domain, Fig. 2 (b)], and 3) without the condition 
[whole domain, ]. In our calculations, 
total numbers of time steps were taken as 

.  
After an FD-TD calculation, the discrete 

Fourier transform is applied to the observed time 
responses of to extract 
the resonance frequency, . Fig. 3 shows the 
normalized resonance frequencies as a function of 

. We note that the results for all models are 
identical. We can see that the normalized resonance 
frequencies converge to 0.9999 and that the results 
agree very well with . 

Fig. 4 shows the normalized computational 
time, which is defined as  
( ), for each model as a function of . 
Here,  ( ), respectively, denote the 
computational times with whole-, half-, and 
quarter-size of domains. Our codes were run on 
MATLAB in single-thread mode for more accurate 
profiling. We can see that computational time is 
effectively reduced for larger values of  due to 
the reduction of the computational domain with the 
symmetric boundary conditions. For large models 
with , the normalized computational 
times are slightly smaller than 0.5 and 0.25, 
respectively, for the analyses with half- and 
quarter-size of computational domains. The authors 
think that the reduction of computational domains 
improved cache-hit ratio of the codes. 

 
4. Conclusions 

In this paper, the symmetric boundary 
conditions were implemented in the FD-TD method 
with the SGCV. It was applied to resonance 
frequency analysis of a Lamé mode resonator. The 
results showed the validity of the symmetric 
boundary condition. It was also shown that the 
computational time is reduced due to the reduction 
of computational domain.  
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