Love-type Surface Acoustic Wave on Y-X LiTaO₃ with Amorphous Ta₂O₅ Thin Film

アモルファス Ta₂O₅ 薄膜装荷 Y-X LiTaO₃ 上のラブ波型弾性 表面波

Shoji Kakio[†], Haruka Fukasawa, and Keiko Hosaka (Univ. of Yamanashi) 垣尾 省司[†], 深沢 遼, 保坂 桂子(山梨大院・医工)

1. Introduction

Amorphous Ta_2O_5 (a- Ta_2O_5) thin films have high permittivity, a high refractive index, and high density compared with other dielectric thin-film materials. Owing to their properties, a- Ta_2O_5 thin films have been applied as insulator films in metal-insulator-semiconductor devices and as a thin-film material in multilayer structures.

On the other hand, in the field of surface acoustic wave (SAW) devices, it has been reported that trapping effects, such as the transformation from a leaky SAW (LSAW) to a Love-type SAW (Love SAW) and an increase in the coupling factor, can be achieved by loading a LiNbO₃ (LN), quartz, or langasite substrate with an a-Ta₂O₅ thin film with a thickness of a few percent of the wavelength.¹⁻⁴ However, optimization of the deposition conditions to reduce the propagation loss and decrease the temperature coefficient is required.

In this study, the propagation properties of a Love SAW on Y-X LiTaO₃ $(LT)^{5-7}$ with an a-Ta₂O₅ thin film deposited by an RF magnetron sputtering system with a long-throw sputter (LTS) cathode were investigated. In general, an LTS cathode can produce a thin film with a smooth surface because the substrate is not directly exposed to plasma.

2. Sample Fabrication

First, a simple delay line with a single-electrode IDT pair with a period λ of 8.0 µm, an overlap length W of 50 λ , N=30 finger pairs, and a propagation path of length L of 5, 10, 25, or 50 λ was fabricated on Y-X LT using a $0.013-\lambda$ -thick Al film. Next, an a-Ta₂O₅ thin film was deposited on the IDT pair and the metallized propagation path using an RF magnetron sputtering system (ULVAC MPS-2000) with an LTS cathode. The sputtering parameters except for the substrate temperature $T_{\rm S}$ were similar to those in our previous report,⁸ in which X-axis-oriented Ta₂O₅ piezoelectric thin films were deposited using the same RF magnetron sputtering system. $T_{\rm S}$ was set to 150 °C to obtain an amorphous thin film. The deposition rate was 0.31-0.41 µm/h. Samples with normalized film thicknesses (h/λ) of 0.047–0.151 were fabricated.

kakio@yamanashi.ac.jp

Moreover, samples with resonator electrodes consisting of an IDT (λ =8.0 µm, W=50 λ , N=70.5) and reflectors with a shorted grating having 50 refractors were also fabricated.

3. Propagation Properties

Figure 1 shows the measured frequency responses for $L=50 \lambda$. For the sample without the thin film (virgin), the response of the LSAW was observed at a center frequency of 495 MHz and the insertion loss *IL* was measured to be over 55 dB owing to the huge attenuation. It was observed that *IL* was decreased and the center frequency was shifted to a lower frequency by loading with an a-Ta₂O₅ thin film. When the film thickness was 0.120 λ , *IL* was 40 dB less than that for the sample without a film owing to a transformation to a Love SAW as described later.

Figure 2 shows the phase velocity v measured from the center frequency. The theoretical values of the phase velocity for the LSAW, the Love SAW, and the Rayleigh wave (R-SAW) calculated using the elastic constants determined for an a-Ta₂O₅ thin film deposited using a planar-type RF magnetron sputtering system⁹ are also shown in Fig. 2. When the film thickness was greater than 0.120 λ , the LSAW became a Love SAW because the measured phase velocity was lower than that of the slow-shear bulk wave.

The propagation loss *PL* measured from the slope in the *IL* vs propagation length *L* graph is also shown in Fig. 2 together with the calculated attenuation of the LSAW. The reduction of *PL* owing to the transformation to the Love SAW was observed. The minimum *PL* of 0.03 dB/ λ was obtained for the sample with h/λ =0.120.

The value of K^2 determined from the measured IDT admittance is shown in **Fig. 3** together with the calculated K^2 . At film thicknesses of less than 0.068 λ , the measured K^2 was smaller than the calculated value owing its large *PL*. K^2 of 5.8% was obtained for the sample with $h/\lambda=0.120$, for which the minimum *PL* was obtained.

4. **Resonance Properties**

Figure 4 shows the measured amplitude of the admittance for the resonator on a-Ta₂O₅/Al/Y-X LT. Table I shows the measured resonance properties, including the admittance ratio, the minimum phase of admittance *Y*, the bandwidth ratio $(f_a-f_r)/f_a$ (f_a : antiresonance frequency, f_r : resonance frequency),

the resonance quality factor Q_r , and the antiresonance quality factor Q_a for each sample. For comparison, the resonance properties of a similar resonator sample for an LSAW on Al/36° Y-X LT are also shown in Fig. 4 and Table I. The resonance properties improved as the a-Ta₂O₅ film thickness increased. For the sample with h/λ =0.120, the resonance properties of the Love SAW were almost equal to or better than those for the LSAW on Al/36° Y-X LT, except for the bandwidth ratio.

5. Conclusions

The propagation properties of a Love SAW on Y-X LT with an a-Ta₂O₅ thin film deposited by an RF magnetron sputtering system with an LTS cathode were investigated. K^2 of 5.8% and *PL* of 0.03 dB/ λ were obtained for a normalized thickness h/λ of 0.120. Moreover, the resonance properties of the Love SAW were almost equal to or better than those for an LSAW on Al/36° Y-X LT, except for the bandwidth ratio.

References

- 1. S. Kakio et al.: J. Appl. Phys. 87 (2000) 1440.
- 2. S. Kakio et al.: Jpn. J. Appl. Phys. 42 (2003) 3161.
- 3. S. Kakio et al.: Jpn. J. Appl. Phys. 44 (2005) 4544.
- 4. H. Nakanishi *et al.*: Jpn. J. Appl. Phys. **49** (2010) 07HD21.
- 5. T. Takada *et al.*: 1993 Spring National Convention Record, IEICE Jpn. (1993) p.1-348 [in Japanese].
- 6. T. Kanda *et al.*: 1994 Spring National Convention Record, IEICE Jpn. (1994) p.1-441 [in Japanese].
- 7. S. Kakio et al.: Jpn. J. Appl. Phys. 47 (2008) 4060.
- 8. S. Kakio et al.: Jpn. J. Appl. Phys. 49 (2010) 07HB06.
- 9. S. Kakio et al.: Jpn. J. Appl. Phys. 51 (2012) 07GA01.

Structure	h/λ	Admittance ratio [dB]	Minimum phase of $Y[^\circ]$	$\begin{array}{c} (f_{a}-f_{r})/f_{a} \\ [\%] \end{array}$	$Q_{ m r}$	Q_{a}
a-Ta ₂ O ₅ /Al/Y-X LT	0	13.3	-3.3	4.9	21.6	25.3
	0.068	22.6	-38.7	3.4	63.1	45.5
	0.120	36.1	-68.7	1.7	136	369
Al/36°Y-X LT	0	25.8	-62.3	1.9	137	83.9

Table I Measured resonance properties.