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1. Introduction 

Free-vibration acoustic resonance (FVAR) 
of solid is a classical subject studied since the era of 
L. Rayleigh and W. Ritz [1,2]. Recently, a part of the 
generalization is conducted by one of the authors [3]. 
This study considered geometrically nonlinear 
hyperelastic material, rather than the conventional 
linear one, and revealed the existence of color 
symmetry embedded in nonlinear FVAR. Although 
the theory predicts attractive nonlinear phenomena, 
such as the emergence of color symmetry, higher 
harmonics generation and amplitude dependence of 
resonance frequencies, the analysis is limited to two-
dimensional and isotropic hyperelastic materials as it 
requires a considerable amount of computational 
resources. Recently, we revised the theory on the 
basis of quasiharmonic approximation. Because of 
the theoretical simplicity, we could evaluate the 
effect of geometrical and material nonlinearities on 
FVAR of a three-dimensional and anisotropic 
hyperelastic material. This study also suggested that 
we can determined the third-order elastic constants 
from experimentally measured FVAR frequencies at 
high pressures. However, the revised theory is still 
limited to cubic-symmetry crystals and further 
generalization is needed for practical experiments. 
The aim of this study is to develop the theory of 
quasiharmonic FVAR for orthorhombic-symmetry 
crystals. 
 
2. Theory of quasiharmonic FVAR 
2.1 Variational formulation 
 We consider a rectangular parallelepiped-
shaped hyperelastic material 

, which has a orthorhombic 
crystal type elastic anisotropy. Let  be 
the displacement function expressed by the Lagrange 
description. Then, nonlinear strain energy density 

 is given by 

 

where  and  are the second- and third- 
order elastic constants and  is the Green-
Lagrange strain tensor. In the present study, we 
assumed the orthorhombic-symmetry for  
and . Let  be the surface normal vector 
defined on the domain surface  and  
be the external hydrostatic pressure vector applied on 
the domain. Then, the potential energy is defined as 
an integration of inner product  over . 
Consequently, the total potential energy  due to 
the displacement  is given by the functional 

 

According to continuum mechanics, the kinematic 
energy T can be expressed by 

 

where  is the mass density defined on 
the reference configuration and  is the kinematic 
energy density. Then, the action integral  is 
defined as an integration of the Lagrangian 

 over a certain time interval  such 
that 

 

where  is the resonant frequency. According to 
the principle of stationary action, the actual 
displacement  must satisfy the stationary 
condition , where  stands for first 
variation of action integral. 

2.2 Direct analysis by Ritz method 
We solve the variational problem  

directly by using the Ritz method. First, we expand 
the displace function into the quasiharmonic form: 

 

where  consists of the normalized Legendre 
polynomial   of the order s. Here, the first term 
shows the static displacement, which is responsible 
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for a uniform contraction (or expansion) by the 
external pressure P. The second is responsible for the 
harmonic vibration. Nonlinear interaction between 
the static and harmonic displacements yield the 
vibration to be quasiharmonic. 
 
3. Resonant vibration under high-pressure 
3.1 Amplitude and pressure dependence of FVAR 
frequency 
 Figure 1 (left) shows the amplitude 
dependence of FVAR frequency  of Magnesium, 
which has a hexagonal symmetry, obtained at . 
As seen here, the frequencies show monotonic 
decreasing on the order of . The right figure 
shows the normalized pressure dependence of . 
This result indicates that the pressure dependence 
varies with the vibration mode and it has a strong 
linearity in the present pressure range: P < |10| MPa. 
 
3.2 Mode Grüneisen parameter 
 According to Fig. 1(left), we can 
approximate the pressure dependence of FVAR 
frequency by a linear function 

. Using the thermodynamic relation, the 
pressure derivative  can be transformed into the 
mode Grüneisen parameter  such that: 

 

where B stands for the bulk modulus. Figure 2 plots 
 with respect to the FVAR frequency  for 

the first to 2,000th modes. Although  exhibits 
large fluctuations at the low-frequency side, the 
fluctuation diminishes at high-frequencies and 
converge to a specific value. Hence, we approximate 
the behavior by a double exponential function and 
determined the high-frequency limit. Table 1 
summarizes the result. For comparison, we included 
the Grüneisen parameter estimated from Debye 
model. As seen in the table, agreement between the 
two models is fairly well. 
 
Table 1 The high-frequency limit mode Grüneisen 
parameter . 

element this work Debye model 
Mg 1.48 1.58 
Ti 1.83 1.97 
Zr 1.77 1.91 
Hf 1.67 1.90 

 
 

Fig. 1 Amplitude dependence (left) and pressure 
dependence (right) of the normalized frequency obtained 
from Mg. 
 

 
Fig. 2 Mode Grüneisen parameter  plotted as a function 
of FVAR frequency . 
 
4. Conclusions 
 We developed the theory of quasiharmonic 
FVAR for orthorhombic-symmetry crystals. 
Numerical analysis revealed that the FVAR 
frequencies depend linearly on the pressure and the 
slopes vary with the vibration modes. We estimated 
the high-frequency limit mode Grüneisen parameters 

 from least-squares fitting of  to a double 
exponential function. The limits  showed 
quantitative agreement with the previously reported 
ones. This result verify the present theory. 
 
References 
1. L. Rayleigh: The theory of sound vol. 1 and 2 

(Dover publications, New York 1945). 
2. W. Ritz: J. die Reine & Angewandte Mathematik 

135, 1-61; Annalen der Physik 28, 737-786. 
3. R. Tarumi: Proc. R. Soc. A 469, 20130275 (2013). 
4. R. Tarumi, Y. Yamaguchi and Y. Shibutani: Proc. 

R. Soc. A, 470, 20140448 (2014). 

－ 270 －


