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1. Introduction
Heat is converted into acoustic energy in 

narrow tubes of a stack in a thermoacoustic engine 
(prime-mover). The thermoacoustic process is 
characterized by , where is the angular 
frequnecy of sound and is the thermal relaxation 
time defined by Eq. (1) 1.

�� = ��/(2�)                (1)
where r is the radius of a narrow tube, and is the 
thermal diffusivity of the gas.

The acoustic pressure (P) and the particle 
velocity (U) of sound at any point are expressed as 
follows.
P = |�|��(����)                   (2)
U = |�|��(����)
= |�| cos ���(����) + |�| sin � ��(������/�) (3)
where and i is the unit imaginary number.
The real part of the complex numbers (P and U) is 
the actual physical quantity. For a traveling-wave, 
there is no phase difference between the particle 
velocity and the acoustic pressure. For a 
standing-wave, the phase difference is /2. Thus, in 
Eq. (3), |U|cos and |U|sin are called the 
traveling-wave and standing-wave component, 
respectively2.

The work flux (I) (acoustic power per unit 
area of cross section) is expressed as follows3.
I = 0.5|�||�| cos �                (4)
The energy efficiency ( of a prime-mover is 
caclulated as follows.
� = (�� � ��)/��                  (5)
where IH and IC are work flux at the higher and 
lower temperature side of a stack, respectively, and 
qH is the heat flux at the higher temperature side of 
a stack. The upper limit of the energy efficiency is 
given by the Carnot efficiency ( Carnot).
������� = 1 � ��/��                (6)
where TH and TC are the temperature at the higher 
and lower temperature side of a stack, respectively.

In the present study, numerical simulations 
of the Rott’s equations are performed in oredr to 
discuss the difference between the traveling-wave 
and standing-wave type prime-mover.
------------------------------------------------------------
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2. Model
The Rott’s equations of momentum and 

continuity are given as follows4.
��/�� = �(���_�)�/(1 � �_� ) (7)

��/�� = ����[1 + (� � 1) �_� ]/
(��_� ) + ((��_�)/��) �(�_� � �_�)/

((1 � �_� )(1 � �) �_�)   
               (8)

where x is the position along the narrow tube with 
its origin at the lower temperature side of a stack, 
�� , �� , , are the mean density, the mean 
pressure, the ratio of specific heats, and the Prandtl 
number of the working gas, respectively. �� and 
�� are the thermoacoustic functions1.

3. Results and Discussions
Numerical simulations of the Rott’s equations 

have revealed that the work flux increases due to 
the increase of |U| for the traveling-wave type. On 
the other hand, for the standing-wave type, it is due 
to the increase of cos . Furthermore, the 
traveling-wave and standing-wave components 
correspond to the increasing rate of |U| and cos ,
respectively (Fig. 1). Thus, the traveling-wave type 
is the amplitude dominant type because the increase 
of the work flux is due to the increase of the 
amplitude of U. The standing-wave type is the 
phase dominant type because the increase of the 
work flux is due to the increase of the cosine of the 
phase .

The caculated energy efficiency relative to 
the Carnot efficiency is shown in Fig. 2 as a 
function of when the radius (r) of a narrow tube 
of a stack is varied with the fixed temperature 
difference between the cold and hot ends of a stack 
(TC=291 K and TH=600 K). The optimal condition 
is =0.12 and 1.5 for the traveling-wave and the 
standing-wave type, respectively. It nearly agrees 
with the theoretical prediction by Tominaga5 and 
Inoue6 that it is <<1 and =3 for 
traveling-wave and standing-wave type, 
respectively. While the energy efficiency at the 
optimal condition for the traveling-wave type is 
higher than that for the standing-wave type, the 
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energy efficiency for the standing-wave type is 
higher than that for the traveling-wave type at 
relatively higher .

For the traveling-wave type, the energy
efficiency decreases for very small because of 
the decrase of |P| due to the viscous damping. For 
the standing-wave type, on the other hand, it 
decreases for relatively small because the 
increase of cos is suppressed as the phase shift of 
U is suppressed due to the faster heat exchange 
between the wall and a gas parcel.

Fig. 1 The result of the numerical simulation on 
the energy efficiency relative to the Carnot 
efficiency (above) and the ratio of the 
traveling-wave and standing-wave components as 
well as the ratio of the increasing rate of each 
component of the work flux (below) as a function 
of the initial phase difference ( ) between the 
particle velocity and the acoustic pressure (41 Hz).

Fig. 2 The result of the numerical simulation on 
the energy efficiency relative to the Carnot 
efficiency as a function of for traveling-wave 
and standing-wave type with TH=600 K and TC=291 
K (41 Hz).

4. Conclusions
Numerical simulations of the Rott’s equations 

have revealed that the mechansim of the 
dependence of the energy efficiency on is 
different between the traveling-wave and
standing-wave type engine because the mechansim 
of the increase in the work flux is completely 
different. 
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