Elastic constants c_{11} and c_{66} in Sc_xAl_{1-x}N films determined by Brillouin scattering method

Brillouin 光散乱法による ScAlN 薄膜の弾性定数 *c*₁₁ と *c*₆₆ の Sc 濃度依存性

Hayato Ichihashi^{1†}, Takahiko Yanagitani², Masashi Suzuki², Shinji Takayanagi¹, Masahiko Kawabe¹, and Mami Matsukawa¹ (¹Doshisha Univ.; ²Nagoya Inst. Tech.) 市橋 隼人^{1†}, 鈴木 雅視², 柳谷 隆彦², 高柳 真司¹, 川部 昌彦¹, 松川 真美¹ (¹同志社大, ²名工大)

1. Introduction

In recent years, significant enhancement of piezoelectricity was experimentally found in $Sc_{0.43}Al_{0.67}N$ film by Akiyama et al..¹⁾

Large piezoelectricity in ScAlN films are attractive for the BAW and SAW resonators. Elastic properties of the films are important for BAW and SAW modeling. Therefore, the c_{33} and $(c_{33}^{D}/\rho)^{1/2}$ have been actually investigated using BAW resonators. Matloub et al. investigated the longitudinal wave velocity $[v = (c_{33} D / \rho)^{1/2}]$ in a $Sc_{0,12}Al_{0,88}N$ film bulk acoustic resonator (FBAR), and they show that the velocity (10300 m/s) was lower that of an AlN single crystal (11132 m/s).^{2,3)} Moreira et al. investigated the elastic constants c_{33}^{E} in $Sc_xAl_{1-x}N$ FBARs ($0 \le x \le 0.15$), and indicated that the elastic constants decreased with increasing of Sc concentration.⁴⁾ We also previously investigated the longitudinal wave velocities v = $(c_{33}^{D}/\rho)^{1/2}$ in the Sc_xAl_{1-x}N high-overtone bulk acoustic resonators (HBARs) $(0 \le x \le 0.63)$.⁵⁾ In the investigations, the wave velocities increased with increasing of Sc concentrations of x > 0.5. However, other elastic components such as c_{11} and c_{66} have not been investigated yet.

In this study, we investigated longitudinal and shear wave velocities $[v_L = (c_{11}/\rho)^{1/2}$ and $v_S = (c_{66}/\rho)^{1/2}]$ in Sc_xAl_{1-x}N films ($0 \le x \le 0.63$). These wave velocities were determined by Brillouin scattering method. In addition, we estimated the elastic constants c_{11} and c_{66} using the mass density of an AlN single crystal.

2. ScAlN film samples

 $Sc_xAl_{1-x}N$ films were prepared using a conventional RF magnetron sputtering system. All (0001) ScAlN films (4 – 5 μ m) were deposited on a (0001) Ti film (90 – 250 nm) on a silica glass substrate (25 × 50 × 0.5 mm³). Sc/Al atomic concentration ratios were determined using an energy dispersion x-ray spectroscopy (JSM-7001FF,

E-mail address: <u>yana@nitech.ac.jp</u>

JEOL Ltd.). The crystal orientations were estimated using an x-ray diffraction analysis (X-pert Pro MRD, Philips).

3. Brillouin scattering measurement

The Brillouin scattering measurement system is shown in Fig. 1. The six-pass tandem Fabry-Pérot interferometer (JRS Scientific Instruments) and Ar ion laser (Innova-304, Coherent Inc., 514.5 nm) were used in this system. The laser power was 230 mW near the samples. The diameter of focused laser beam was approximately 50 μ m on the samples. The temperature of samples increased to 33 - 34 °C from 26 - 27 °C (room temperature) by the laser beam irradiation. This temperature increase was measured by a thermocouple. The scattered light was detected using a photomultiplier (R464S, Hamamatsu Photonics). As shown in Fig. 1. the reflection-induced ΘA (RI ΘA) scattering geometry was adopted to measure the longitudinal and shear wave velocities propagating in-plane direction simultaneously.⁶⁾ The Ti bottom films were used as the optical reflector. The incident angle of the laser beam was set at 41°. The typical spectra observed for the films with Sc concentrations of 11, 41 and 63 % are shown in Fig. 2. From the frequency shifts of these Brillouin peaks, longitudinal or shear wave velocities $v^{\Theta A}_{(L,S)}$ are given by

$$v_{(L,S)}^{\Theta A} = f_{(L,S)}^{\Theta A} \frac{\lambda_{i}}{2\sin(\Theta'/2)},$$
 (1)

where $f_{(L,S)}^{\Theta A}$ is the shift frequency, λ_i is the wave length of the incident laser beam and Θ is the scattering angle. We determined the shift frequencies by fitting with Voigt function. The scattering angles were calibrated by measuring the shift frequencies of the Brillouin peaks for standard a silica glass plate sample (5957 m/s at 23 °C; ED-B, Tosho Corp.).⁷⁾

4. Result and discussion

The measured longitudinal and shear wave velocities $[v_{\rm L} = (c_{11}/\rho)^{1/2}$ and $v_{\rm S} = (c_{66}/\rho)^{1/2}$ in $Sc_xAl_{1-x}N$ films are shown in **Fig. 3**. The both longitudinal and shear wave velocities decreased with Sc concentration in the Sc concentrations of x < 0.5. On the other hand, the shear wave velocities in the Sc concentrations of x>0.5 seemed to increase. These results show similar tendencies with the longitudinal wave velocities $v = (c_{33}/\rho)^{1/2}$.⁵ However, as shown in Fig. 2 (c), we could not measure the longitudinal wave velocities in the Sc concentrations of x>0.47 owing to very weak Brillouin scattered light.

Next, the estimated elastic constants of c_{11} $= \rho v_{\rm L}^2$ and $c_{66} = \rho v_{\rm S}^2$ in Sc_xAl_{1-x}N films are shown in Fig. 4. The theoretical values reported by Zhang et al. are also plotted.⁸⁾ Assuming that the mass densities hardly change, the mass density (3260 kg/m³) of an AlN single crystal was used for the estimations.³⁾ As shown in Fig. 4, the estimated values were higher than the theoretical values. In addition, the decreasing rates of estimated values were similar to those of theoretical values.

interferometer Fig. 1 Brillouin scatteriung measurement system and

reflection-induced ΘA scattering geometry. $k_i^{\Theta A}$ and $k_{\rm s}^{\Theta \rm A}$ are the wave vectors of incident and scattered lights. $q^{\Theta A}$ is the wave vector of the acoustic wave. Θ is the scattering angle.

Fig. 2 The measured Brilllouin spectra from the $Sc_xAl_{1-x}N$ films with Sc concentrations x of (a) 0.11, (b) 0.41 and (c) 0.63. The Brillouin peak intensities decreased with Sc concentration.

Fig. 3 The longitudinal and shear wave velocities $[v_{\rm L} =$ $(c_{11}/\rho)^{1/2}$ and $v_{\rm S} = (c_{66}/\rho)^{1/2}$] as a function of Sc concentration x in the Sc_xAl_{1-x}N films.

Fig. 4 The estimated elastic constants (a) c_{11} and (b) c_{66} as a function of Sc concentration x in the $Sc_xAl_{1-x}N$ films. The theoretical values reported by Zhang et al. are also plotted in this graph.⁸⁾

References

- M. Akiyama, T. Kamohara, K. Kano, A. 1 Teshigahara, Y. Takeuchi and N. Kawahara: Adv. Mater., 21 (2008) 5.
- 2. R. Matloub, A. Artieda, C. Sandu, E. Milyutin and P. Muralt: Appl. Phys. Lett., 99 (2011) 092903.
- 3. Y. Ohashi, M. Arakawa, J-I. Kushibiki, B. M. Epelbaum and A. Winnacker: Appl. Phys. Express, 1 (2008) 7.
- M. Moreira, J. Bjurström, I. Katardjev, V. 4. Yantchev: Vacuum, 86 (2011) p. 23.
- 5. M, Suzuki, T. Yanagitani: Abstra. IEEE Int. Ultrasonics Sympo. 2013, p. 286.
- J. K. Krüger, J. Embs, J. Brierley, and R 6. Jiménez: J. Phys. D: Appl. Phys., 31 (1998) 1913.
- 7. J. Kushibiki and A. Tada: IEICE Technical Report, US99-67 (1999) p. 1 (in japanese).
- S. Zhang, W. Y. Fu, D. Holec, C. Humphreys 8. and M. A. Moram: J. Appl. Phys., 114 (2013) 243516.