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3. Results and Discussion 
Figure 3 shows observed waveforms 

measured by the bone transducer of the radial 
sample. We could observe shear ultrasound waves 
by the bone transducer. The amplitudes showed 
maximum at 0 and 180 degrees, whereas they 
showed minimum at 90 and 270 degrees. It means 
that, the sensitivity was high when the polarization 
plane of the shear wave was in the axial direction 
rather than the tangential direction. 

Next, we measured the waves by rotating the 
bone transducers at each 10 degrees. Figure 4 
shows relationships between the induced electrical 
potentials and wave polarization directions. In Figs. 
4 (a) and (b), the amplitudes showed maximum in 
the axial directions (d15, d24), whereas they showed 
minimum in the radial and tangential directions (d16, 
d26). It has been reported that d16 and d26 were 0 
pC/N in low frequency mechanical studies [6]. 
However, the small induced electrical potentials 
were also observed when the polarization plane was 
in the radial and tangential directions. Then, we 
measured the HAp crystal orientation in the axial 
sample using the X-ray diffraction technique 
(Philips X-Pert Pro MRD). The orientation of HAp 
crystal in the bone sample was inclined about 2 
degrees from the bone axis. The data suggest that 
bone anisotropy due to the alignment of collagen 
and HAp has a clear effect on the induced electrical 
potentials. Since the HAp crystal orientation was 
slightly tilted from the axial directions in bovine 
bone, the induced electrical potentials seemed to be 
observed in all axes. 

Figure 4 (c) shows a relationship between the 
induced electrical potentials and wave polarization 
directions in the axial sample. The radial-tangential 
plane of the cortical bone has been reported to be 
isotropic. Accordingly, the amplitudes of induced 
electrical potentials are expected to be constant at 
all angles. However, in our results, the amplitudes 
showed maximum in the tangential direction and 
minimum in the radial direction. Yamato has 
reported the longitudinal velocity in the radial 
direction was 3,460 ± 78 m/s and that in the 
tangential direction was 3,676 ± 142 m/s [5]. It 
indicates that this plane was slightly anisotropic, 
then, the amplitudes of induced electrical potentials 
seemed to change owing to the polarization plane. 
 
4. Conclusion 

We investigated the induced electrical 
potentials in the cortical bone by shear wave 
irradiation. Consequently, the induced electrical 
potentials changed due to the propagation and wave 
polarization directions in the bone samples. These 
results also indicate that there are appropriate 
irradiation directions of ultrasound to generate 
electrical potentials. 
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Fig. 3 Observed waves of radial sample. 
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Fig. 4 Relationships between the induced electrical  

potentials and wave polarization directions. 
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1. Introduction 

The daily screening of cortical bone quality is 
important for the early detection of osteoporosis. 
Recently, the ultrasound axial transmission (AT) has 
attracted strong attention [1]. AT is a technique that 
reveals the properties of specimen by analyzing the 
ultrasonic guided wave, which is called the Lamb 
wave, propagating in the cortical bone. The 
wavenumber of the Lamb wave reflects the 
properties of a specimen. Estimation of the 
wavenumbers of the Lamb wave is thus important.  

Several studies have been conducted to 
estimate the wavenumber of the Lamb wave. Our 
group reported the high-resolution wavenumber 
estimation for AT employing the Estimation of 
Signal Parameters via Rotational Invariance 
Techniques (ESPRIT) algorithm [2]. The algorithm 
requires the estimation of the number of 
propagation modes that exist at the measurement 
frequency. We make this estimation by evaluating 
the correspondences between results with different 
aperture size of probe. However, the use of a 
smaller aperture deteriorates the resolution. Thus, in 
the present study, we propose an algorithm that 
estimates the wavenumbers without sacrificing the 
aperture size of the probe. 

We estimate the number of the propagation 
modes which exist at the measurement frequency 
by using information theoretic criteria [3]. The 
method is known to estimate the number of signal 
sources in the received signal for the ESPRIT 
algorithm. However, the method is not optimized 
for AT and it causes false estimates. Thus, we 
propose a technique that removes the false 
estimated wavenumbers by focusing on the 
characteristic of Lamb wave[2]. 
2. Materials and Methods 

1.1 Basics of the ESPRIT algorithm 

Figure 1 shows the system model. We use a 
linear array probe that has a single transmitter and 

N equally-spaced receivers. Here, we briefly 
explain the basics of ESPRIT algorithm.  

The ESPRIT algorithm estimates multiple 
propagation waves through eigenvalue 
decomposition of the covariance matrix. The 
covariance matrix is estimated by situating the 
full-array into sub-arrays and averaging the 
covariance matrixes at sub-arrays. The matrix is 
given by following equation: 

H

1
( ) ( )1 ( )i

D

i
i

f
D

f f


 R S S ,   (1) 

where Si is the signal vector at i-th subarray, R is 
the covariance matrix, []H denotes the Hermitian 
transpose, and D (= N – Nsub + 1) is the number of 
covariance matrix averaging. Nsub is the sub-array 
size. 

The number of the propagation mode, M, is 
conventionally estimated by using the eigenvalue 
with thresholding process because larger 
eigenvalues represents the received signals and 
lower eigenvalues correspond to the intensity of 
noise. 

1.2 Proposed estimation technique of the number of 
propagating modes using information theoretic 
criteria 

To estimate the number of propagation modes 
existing at the measurement frequency, we employ 
a  method based on the information theoretic 
criteria [3, 4].  
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Fig. 1  System model 
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where g is the evaluation value of the covariance 
matrix, M(f) is the estimated number of propagation 
mode, and li is the i-th eigenvalue of the covariance 
matrix. The number of modes corresponds to m that 
minimizes g. 

As shown in Eq. (3), the first term of g is the 
ratio between geometric and arithmetic mean of the 
eigenvalues. Thus, with a large range of the 
eigenvalue, the estimation is unstable. To overcome 
this problem, the technique of adding the offset 
value to the eigenvalues has been reported [4]. The 
reported method adds the offset value by adding the 
quasi-noise matrix to the covariance matrix. 

d( ) ( )f f   R R I ,    (4) 
where d is the stabilization factor, and R’(f) is the 
modified covariance matrix, and I is the unit 
matrix. 

The choice of the stabilization factor directly 
affects the performance of the technique. We thus 
propose a new method to determine the factor for 
wavenumber estimation of Lamb wave. M(f) does 
not change drastically along f direction. Thus, we 
do not set the offset value independently along f 
direction, but set it by the following equation.  

d submax[tr{ ( )}/ ]
f

f N  R ,   (5) 

where tr{} denotes the trace of the matrix and  is 
the constant value. 

1.3 Elimination of false wavenumber estimates 

We finally remove the false wavenumbers 
estimates using the A0 mode wavenumber. The A0 
mode has the highest wavenumber and is dominant 
in the lower frequency range. The ESPRIT 
algorithm can estimate the intensity of each mode. 
Thus the wavenumber with the highest intensity in 
the low frequency range corresponds to the A0 
mode wavenumber.  

In the frequency-wavenumber domain, the 
A0 mode wavenumber lineally increase with 
increasing frequency. Thus, we employ linear 
approximation and remove the wavenumber that is 
higher than the estimated line.  
1.4 Simulation setting 

We conduct a simulation to evaluate the 
proposed method. A linear array probe is attached to 

a 2.0-mm thick copper plate. The center frequency 
is 1.0 MHz. We use 16 receivers with 0.75 mm 
pitch. The peak spectrum density signal to noise 
ratio is 30 dB. We use dB. 

As the conventional method, we select the 
eigenvalues that are larger than one-hundredth of 
the maximum eigenvalue.  
3. Results  

Figure 2 shows the estimated wavenumbers 
of the Lamb wave. The root-mean-squared errors 
(RMSE) for the proposed method and conventional 
method are 74 rad/m and 831 rad/m, respectively. 
The proposed method succeeded in estimating the 
wavenumber accurately and eliminating the false 
estimates at wavenumber of around 8000 rad/m. 
4. Conclusion 

We proposed a new algorithm that estimates 
wavenumbers of the Lamb wave. The proposed 
method does not sacrifice the aperture size; i.e., 
resolution. The method estimated the number of 
propagation mode at each frequency and succeeded 
in estimating the wavenumber of Lamb wave 
accurately. The results demonstrate that the 
proposed algorithm has high potential for the 
assessment of bone quality. 
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Fig. 2 Wavenumber estimation results of the proposed 
method and the conventional method (red cross marks 
and blue circles) and the true wavenumber (black lines).  
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