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Propagating in Cortical Bone Using an Adaptive Signal
Processing Technique with Information Theoretic Criteria
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1. Introduction

The daily screening of cortical bone quality is
important for the early detection of osteoporosis.
Recently, the ultrasound axial transmission (AT) has
attracted strong attention [1]. AT is a technique that
reveals the properties of specimen by analyzing the
ultrasonic guided wave, which is called the Lamb
wave, propagating in the cortical bone. The
wavenumber of the Lamb wave reflects the
properties of a specimen. Estimation of the
wavenumbers of the Lamb wave is thus important.

Several studies have been conducted to
estimate the wavenumber of the Lamb wave. Our
group reported the high-resolution wavenumber
estimation for AT employing the Estimation of
Signal Parameters via Rotational Invariance
Techniques (ESPRIT) algorithm [2]. The algorithm
requires the estimation of the number of
propagation modes that exist at the measurement
frequency. We make this estimation by evaluating
the correspondences between results with different
aperture size of probe. However, the use of a
smaller aperture deteriorates the resolution. Thus, in
the present study, we propose an algorithm that
estimates the wavenumbers without sacrificing the
aperture size of the probe.

We estimate the number of the propagation
modes which exist at the measurement frequency
by using information theoretic criteria [3]. The
method is known to estimate the number of signal
sources in the received signal for the ESPRIT
algorithm. However, the method is not optimized
for AT and it causes false estimates. Thus, we
propose a technique that removes the false
estimated wavenumbers by focusing on the
characteristic of Lamb wave[2].

2. Materials and Methods
1.1 Basics of the ESPRIT algorithm

Figure 1 shows the system model. We use a
linear array probe that has a single transmitter and
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Fig. 1 System model
N equally-spaced receivers. Here, we briefly

explain the basics of ESPRIT algorithm.

The ESPRIT algorithm estimates multiple
propagation waves through eigenvalue
decomposition of the covariance matrix. The
covariance matrix is estimated by situating the
full-array into sub-arrays and averaging the
covariance matrixes at sub-arrays. The matrix is
given by following equation:

R(f)=%ZS,-(f)S[H(f), (1)

where S; is the signal vector at i-th subarray, R is
the covariance matrix, [] denotes the Hermitian
transpose, and D (= N — Ngp+ 1) is the number of
covariance matrix averaging. Ny is the sub-array
size.

The number of the propagation mode, M, is
conventionally estimated by using the eigenvalue
with  thresholding process because larger
eigenvalues represents the received signals and
lower eigenvalues correspond to the intensity of
noise.

1.2 Proposed estimation technique of the number of
propagating modes using information theoretic
criteria

To estimate the number of propagation modes
existing at the measurement frequency, we employ
a method based on the information theoretic
criteria [3, 4].

M(f)=argmin(g(m. /), @
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where g is the evaluation value of the covariance
matrix, M(f) is the estimated number of propagation
mode, and /; is the i-th eigenvalue of the covariance
matrix. The number of modes corresponds to m that
minimizes g.

As shown in Eq. (3), the first term of g is the
ratio between geometric and arithmetic mean of the
eigenvalues. Thus, with a large range of the
eigenvalue, the estimation is unstable. To overcome
this problem, the technique of adding the offset
value to the eigenvalues has been reported [4]. The
reported method adds the offset value by adding the
quasi-noise matrix to the covariance matrix.
R'(f)=R(/)+ AL, 4)
where Aq4 is the stabilization factor, and R’(f) is the
modified covariance matrix, and I is the unit
matrix.

The choice of the stabilization factor directly
affects the performance of the technique. We thus
propose a new method to determine the factor for
wavenumber estimation of Lamb wave. M(f) does
not change drastically along f direction. Thus, we
do not set the offset value independently along f
direction, but set it by the following equation.

Ay =1 max [tr{R(f)}/ Ny ] )

where tr{} denotes the trace of the matrix and 7 is
the constant value.

1.3 Elimination of false wavenumber estimates

We finally remove the false wavenumbers
estimates using the A0 mode wavenumber. The A0
mode has the highest wavenumber and is dominant
in the lower frequency range. The ESPRIT
algorithm can estimate the intensity of each mode.
Thus the wavenumber with the highest intensity in
the low frequency range corresponds to the A0
mode wavenumber.

In the frequency-wavenumber domain, the
A0 mode wavenumber lineally increase with
increasing frequency. Thus, we employ linear
approximation and remove the wavenumber that is
higher than the estimated line.

1.4 Simulation setting

We conduct a simulation to evaluate the
proposed method. A linear array probe is attached to
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a 2.0-mm thick copper plate. The center frequency
is 1.0 MHz. We use 16 receivers with 0.75 mm
pitch. The peak spectrum density signal to noise
ratio is 30 dB. We use r7=-50 dB.

As the conventional method, we select the
eigenvalues that are larger than one-hundredth of
the maximum eigenvalue.

3. Results

Figure 2 shows the estimated wavenumbers
of the Lamb wave. The root-mean-squared errors
(RMSE) for the proposed method and conventional
method are 74 rad/m and 831 rad/m, respectively.
The proposed method succeeded in estimating the
wavenumber accurately and eliminating the false
estimates at wavenumber of around 8000 rad/m.

4. Conclusion

We proposed a new algorithm that estimates
wavenumbers of the Lamb wave. The proposed
method does not sacrifice the aperture size; i.e.,
resolution. The method estimated the number of
propagation mode at each frequency and succeeded
in estimating the wavenumber of Lamb wave
accurately. The results demonstrate that the
proposed algorithm has high potential for the
assessment of bone quality.
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Fig. 2 Wavenumber estimation results of the proposed

method and the conventional method (red cross marks

and blue circles) and the true wavenumber (black lines).
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