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1. Introduction
Ultrasonic scattering tends to occur when an

ultrasonic wave propagates an object having a
different acoustic impedance, which is sufficiently
smaller than the wavelength. Scattering reduces the
detectability of objects in ultrasound images,
reduces contrast, and reduces the accuracy of
ultrasound imaging. On the other hand, it should be
noted that the ultrasonic imaging includes a signal
obtained by a coherent summation of the echo
signals from the scatterers within the tissue.
Therefore, the tissue scatterer echo contains useful
information, it should be kept.
As described above, since scatterers generate

speckle patterns and hinder the detection of small
objects, various suppression methods have been
proposed. In recent years, study to reduce scatterer
noise positively by capturing a small number of
powerful echo sources is attracting increasing
attention based on compression sensing and sparse
modeling techniques. In this case, only the intensity
of the echo is considered, and the characteristics of
the scatterer are ignored. Based on these facts, in
this study, we aim to recover the reflection
distribution of the scatterers from echoes. When the
small scatterers are correctly recovered, subtracting
the corresponding echoes from the whole echo
generates images consisting only of the strong and
sparse scatterers, i.e., contours of organs, blood
vessels, tumors, etc. In addition, by separately
processing small scatterers and large reflectors, it is
possible to image both separately. From the
scatterer image, it may become possible to diagnose
the tissue properties as a change from the time
course and from the standard.

2. Method
Ultrasonic RF echo y is a synthesis of individual

contributions from all scatterers placed randomly in
a medium, and can be modeled as follows

nWhy  (1)
where W represents the convolution with the
transmission pulse, h represents the equivalent
reflectance, and n represents white Gaussian noise
with a variance of σn

2.

As the transmission pulse becomes wide, the rank
of W becomes close to zero. Thus, we can use W+

the pseudo-inverse ofW to simply recover h as
yWh ˆ (2)

The solution is sensitive to the noise included in y,
and the information contained in h and discarded by
W cannot be recovered. Instead, we apply the AR
model to h, and consider a method to recover
discarded information by extrapolation [1].
Accordingly, the h of the scattered signals

through an AR model is given by
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where a ≡ {a1 , a2 , ..., aP} is called the AR
parameter, P is the order of the AR model, and εi is

white Gaussian noise with a variance of σh
2. In this

case, h follows the multi-dimensional normal
distribution, and its probabilistic density is
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where, A is a matrix consisting of a. Then,
according to Eq.1, the probabilistic density of y
under the condition that h is given forms the
following normal distribution.

   







 
 22

2

2
exp

)2(
1),|(

n

t

N
n

np


 WhyWhyhy (5)

Using Eqs.4 and 5, the joint probability is as follows:
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In general, the parameters {σn
2, σh

2, a} are
estimated as a maximum likelihood estimator (MLE)
using the probabilistic density of y obtained by
marginalizing Eq.6 with respect to h.
Finally, we can get the h determined as a

maximum a posteriori (MAP) estimator hˆMAP

(7)
In this way, the recovery using the AR

parameters estimated based on the marginal
likelihood is performed. The parameters in the AR
model indicate the correlation intrinsic in the
reflection distribution, and these are expected to
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parameterize tissue properties. However, scatterers
recovery must be treated as an ill-posed problem
because the bandwidth of the signal is limited by
characteristics of the transducer.
For the performance evaluation depending on the

order of the AR model and the AR parameters, in
this study, we set the order as 2 heuristically, so the
AR parameters are the main evaluation parameter.
Besides, since the observation noise is electric noise,
we can suppose that σn

2 is known in advance.

3. Simulations
We confirmed the effectiveness of the proposed

method through simulations using PZFlex, a
standard FEM code for ultrasound analysis. An
example of our simulated medium is given in Fig.
1(a). We assume that scatterers have random spatial
distribution and the attenuation is homogeneous.
In the simulations, a linear array transducer with

128 elements was formed, each element width and
each separation being 0.02 mm, respectively. In
consideration of the size of scatterer, three different
size scatterers were applied, and a 5 cycle pulse of 5
MHz shown in Fig. 1(b) was transmitted.

(a) (b)

4. Results and Discussion
As we can see that the different size scatterers are

shown in Fig. 2. It can be easily seen that the size of
scatterers increases in the order of (a), (b), and (c).
Figure 3 shows time series of a received echo
signal, Through the Fig.3, we can vaguely
distinguish the different sizes of the scatterers.
Figure 4 shows the result of recovered reflection

distribution determined by the AR parameters. The
estimated AR parameters in model (a) are a1
=1.6326, a2= -0.7019 and σh

2=0.133, in model (b)
are a1= -0.1759, a2=0.7723 and σh

2=1.9871, while
in model (c) there are a1= -0.1513, a2=0.8316 and
σh
2=0.2913. As mentioned before, the noise

variance σn
2 of the all models are set in 0.0009,

when the peak amplitude of the transmission pulse
was normalized, the standard deviation of noise was
3% of the standard deviation of y. It can be easily
predicted from the recovered reflection distribution
that the size of scatterers is different.

(a)

(b)

(c)

As can be seen from Fig. 5, the red line, the
black dashed line and the blue dash dot line are the
auto correlation functions (ACFs) of the echo
signals in model (a), model (b) and model (c),
respectively. Figure 6 shows the ACFs of the
recovered reflection distributions in the same way.
Even if the size of the scatterer increases, the ACFs
of the echo signals does not seem to change much.
However, the ACFs of the recovered reflection
distributions change obviously. That is to say, we
can evaluate the size of the scatterers by estimating
the ACFs of the recovered reflection distributions.

5. Conclusion and FutureWork
In this study, we present an estimation method of

the scatterers distribution based on the Bayesian
inference and the AR modeling from the echo. We
analyze the relationship between the recovered
reflection distributions and the AR parameters. The
proposed method is confirmed to be effective for
the observation of different scatterers compared to
the echo signal and the recovered reflection
distribution has better distinction. Furthermore, the
ACFs of the recovered reflection distributions are
expected to be applied to the quantitative analysis
of scatterers.
Currently, the order of the AR model is set to 2,

confirming other orders of the AR model will be a
future task. Additionally, we are developing a new
imaging system that separately display the
boundary of the organ and the inside the organ.
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Fig.2 Different
patterns of scatterers

Fig. 1 Simulation conditions: (a) example of
simulation model; (b) transmitted signal;

Fig.3 Time series
of echo signals

Fig.5 ACFs of
echo signals

Fig. 4 Recovered
reflection distributions

Fig.6 ACFs of recovered
reflection distributions
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