Enhancement of desorption amount of carbon dioxide gas from monoethanolamine solution using ultrasound and calcium chloride

超音波と塩化カルシウムを用いたモノエタノールアミン溶液 からの CO₂ガス脱離量の増進

Yuya Kitamura[†], Hirokazu Okawa, Takahiro Kato, and Katsuyasu Sugawara (Akita Univ.)

北村 優弥[†], 大川 浩一, 加藤 貴宏, 菅原 勝康 (秋田大院 理工)

1. Introduction

Large amount exthoust of CO_2 gas is concern about global warming. Therefore, we have to abate emission of CO_2 gas from some places. Currently, carbon dioxide capture and storage (CCS) technologies are expected as a global warming measure. Monoethanolamine (MEA) has been used as an absorbent for capturing CO_2 from exhaust gas. Because MEA has several advantages over other alkanolamines: high CO_2 absorption amount per unit weight, high CO_2 absorption rate, and the low solvent cost.¹⁾ However, high temperature of 120 °C is necessary to desorb CO_2 gas from MEA solution. When CO_2 is absorbed into MEA solution, carbamate ion (RNHCOO⁻) is generated as a following reaction,

$$2\text{RNH}_2 + \text{CO}_2 \rightarrow \text{RNH}_3^+ + \text{RNHCOO}^-.$$
(1)
(R: C₂H₅O, RNH₂: MEA)

Also, chemical species of CO_2 in an aqueous solution are changed by pH of the solution. The species are mainly three: dissolved CO_2 gas $(CO_2(aq))$, HCO_3^- , and CO_3^{2-} (Fig. 1 and Eq. (2)–(4)).

In the previous study, Fujiwara et al reported that desorption of CO₂ gas from low-concentration MEA solution (0.2 M) at low temperature (25 °C) using deaerating action of ultrasound.²⁾ Deaerating action of ultrasound can desorb CO₂(aq) which exists as a gas in a solution. However, it is difficult to desorb CO₂ gas from the other chemical species such as RNHCOO⁻, HCO₃⁻, and CO₃²⁻. Therefore, ultrasound treatment is difficult to desorb CO₂ over pH 8.2 (**Fig. 1**).

Recently, Kojima et al reported that CO_2 is able to be desorbed from MEA solution by the synthesis of CaCO₃ using calcium chloride (CaCl₂).³⁾ The synthesis reaction of CaCO₃ is shown in Eq. (5).

okawa@mine.akita-u ac.jp (H. Okawa)

$$Ca^{2+} + HCO_{3-} \rightarrow CaCO_{3} + H^{+}$$
(5)

In addition, the equilibrium of CO_2 in a solution can shift in the direction of the increase of $CO_2(aq)$ due to the increase of H⁺ concentration in a MEA solution by the synthesis reaction of calcium carbonate as shown in Eq. (5). Increasing of H⁺ concentration increase concentration of CO₂(aq) from HCO_3^- . $(HCO_3^- + H^+ \rightarrow H_2CO_3 \rightarrow CO_2(aq) +$ H₂O). Fujiwara focused on the decrease of pH by the generation of CaCO3 and reported the desorption of CO₂ gas from CO₂ dissolved MEA solution using ultrasound irradiation and CaCl₂ addition.²⁾ The desorption amount of CO_2 gas by the addition of CaCl₂ became higher than that of CO₂ gas without the addition of CaCl₂. In this study, we further investigated the enhancement of CO₂ gas desorption amount by the addition of CaCl₂ into the MEA solution. We also investigated the effect of the pH of MEA-CO₂ solution, CaCl₂ additive amount, and treatment time on the generation amount of CaCO₃ and desorption amount of CO₂ gas.

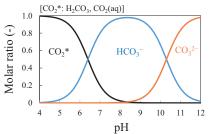
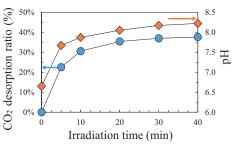


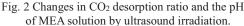
Fig. 1 Relationship between chemical speciation of CO₂ and pH in aqueous solution at 25 °C.

2. Experiment

CO₂-absorbed MEA solution (MEA-CO₂) was prepared by press-fitting of 0.5 MPa CO₂ gas for 60 min (purity >99.99%) through stirring (750 rpm) in a pressure-resistant container. The temperature of MEA solution during the press-fitting has a range of 20–25 °C because of the exothermic reaction between MEA and CO₂. The absorption amount of CO₂ in MEA solution was calculated from the increment amount of weight of MEA solution before and after CO₂ absorption. Desorption experiment of CO₂ gas from MEA

solution was investigated using an ultrasonic generator (Kaijo, TA-4021) and 28 kHz-submersible transducers (Kaijo). In this paper, we confirmed the desorption amount of CO₂ gas from MEA solution using ultrasound irradiation with CaCl₂ addition of different Ca concentration. The transducer was placed at the bottom of a tank filled with water (15 °C). A flat-bottom flask containing the MEA-CO₂ solution (30 mL) was placed directly above the transducer. And then, CaCl₂ solution (30 mL) was added to the MEA-CO₂ solution (30 mL). Ca/CO₂ molar ratios in the mixed solution (60 mL) were set at 0, 0.05, and 0.5, respectively. Ultrasound was indirectly irradiated to the bottom of the flask through the water in a tank for 40 min. The ultrasound power was 11.8 W which value was calculated by the calorimetric method. The initial temperature of the mixed solution before ultrasound irradiation was set at 20 °C. The range of solution temperature during ultrasound irradiation was 20-25 °C by the increase of solution temperature due to the ultrasound energy reached. The CO2 amount desorbed from MEA solution was evaluated from the weight loss of the solution and the generation amount of CaCO₃.


3. Results and discussion


MEA solution, which is mixture of MEA and ion-exchanged water, shows alkaline because OH^- is released as shown in Eq. (6). When CO_2 is injected into the solution, pH of the MEA solution decreased by consumption of OH^- in Eq. (7)–(9).

$RNH_2 + H_2O \rightarrow RNH_3^+ + OH^-$	(6)
$\text{RNH}_3^+ + 2\text{OH}^- + \text{CO}_2 \rightarrow \text{RNHCOO}^- + 2\text{H}_2$	O(7)
$\text{RNH}_2 + \text{CO}_2 \rightarrow \text{RNH}_2^+\text{COO}^-$	(8)
$RNH_2^+COO^- + OH^- \rightarrow RNHCOO^- + H_2O$	(9)

CO₂ absorption for MEA solution reaches equilibration at 20 min. Before, CO₂ desorption experiment, MEA-CO₂ solution was left for 90 min under ambient pressure to desorb CO₂ which is naturally released from MEA solution. The CO₂ absorption amount in MEA solution was 171 mM and the solution pH was 6.7. First, CO₂ desorption experiment from MEA solution using ultrasound without the addition of CaCl₂ was conducted. Fig. 2 shows the changes of CO₂ desorption ratio and the pH values of MEA solution using ultrasound irradiation at each elapsed time. CO₂ desorption ratio and pH were increased with irradiation time. CO₂ desorption ratio was 37% and the pH rose from pH 6.7 to 8.2 at 30 min of sonication time. At the sonication of over 30 min, however, CO₂ desorption ratio and pH were approximately constant. The amount of $CO_2(aq)$, which can be desorbed by ultrasound, is little at pH 8.2 (Fig. 1).

Next is the CO₂ desorption experiment from MEA solution using ultrasound irradiation with the addition of CaCl₂ to increase CO₂ gas desorption ratio. Fig. 3 shows the molar balance of CO₂ after treatment of the MEA-CO2 solution for 40 min using ultrasound with and without addition of CaCl₂. CO₂ desorption ratio and solution pH in the Ca/CO₂ molar ratio of 0, 0.05, and 0.5 were 37%, 43%, and 55%, and 8.2, 8.1, and 6.7, respectively. Desorption ratio of CO₂ gas indicated over 50% at 0.5 of Ca/CO₂ molar ratio. The pH of MEA solution decreased with the emission of H⁺ by the synthesis reaction of calcium carbonate in a solution of Eq. (5). At the condition of $CaCl_2$ addition, the desorption amount of CO₂ gas was enhanced. We considered the reason the equilibrium shift of dissolved CO₂ as follows: $HCO_3^- + H^+ \rightarrow H_2CO_3 \rightarrow$ $CO_2(aq) + H_2O$. Total CO_2 desorption ratios containing CaCO₃ at the Ca/CO₂ molar ratio of 0.05 and 0.5 were 47% and 93%, respectively. In a presentation, we will make a presentation about the effect of pH and treatment time of MEA-CO₂ solution on the generation amount of CaCO₃ and desorption amount of CO₂ gas, respectively.

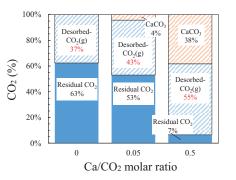


Fig. 3 Molar balances of CO₂ after treatment of the MEA-CO₂ solution for 40 min using ultrasound with and without addition of CaCl₂.

References

- 1) K. Goto, et al.: Int. J. Greenhouse Gas Contr., 5 (2011) 1214.
- 2) T. Fujiwara, et al.: J. of MMIJ, **135**(1) (2019) 1.
- 3) Y. Kojima, et al.: J. Soc. Inorg. Mater. Japan, **19** (2012) 104.