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1. Introduction 

 The resonance scattering of acoustic or 
elastic waves from an elastic cylinder has been 
investigated theoretically and experimentally.1-3 
Resonance scattering is due to the eigen vibration of 
the cylinder when the frequency of the incident wave 
coincides with the eigen frequency of the cylinder. 
This decreases the amplitude of the backscattering 
wave.  

 In most studies on elastic wave resonance 
scattering, the cylinder is assumed to be perfectly 
connected to the matrix. However, actual contact or 
adhesive interfaces should be considered imperfect 
boundaries. The spring interface model is a widely 
used numerical model for this purpose. Elastic 
scattering wave for the model has been studied,4 but 
resonance scattering is not mentioned in detail. 

In this paper, we propose a resonance 
theory of elastic wave scattering for the spring 
interface model and then demonstrate its feasibility 
through a numerical example. 

 

2. Theory 

 We consider a system in which an elastic 
cylinder with radius a is connected to an elastic 
matrix by springs. In Fig. 1,  and  denote the 
interfacial stiffnesses in the radial and angular 
directions, respectively. We distinguish the physical 
quantities of the incident, scattered, and refracted 
wave fields by superscripts: inc, sca, and ref, 
respectively. 

We assume that an infinite-plane 
longitudinal wave with an angular frequency  is 
incident on the cylinder. The amplitude of the far-
field scattering wave is known as form function. The 
longitudinal scattering form function   and the 
transverse scattering form function   can be 
expressed as a sum of the partial wave amplitudes:  

   (1) 

   (2) 

Here and in the following, the   time 
dependence is suppressed. In Eqs. (1) and (2), 

 and  are wavenumbers, where  
and   denote the longitudinal and transverse 
velocities of the matrix, respectively. The integer  
represents the normal mode of the partial wave. The 
expansion coefficients   and   can be 
determined from the boundary condition for the 
spring interface at : 

  (3) 

  (4) 

  (5) 

  (6) 

When  ,  , the boundary condition is the 
same as the case for the perfect bond.2 According to 
Rhee and Park,3 the expansion coefficients  and 

 can be expanded as follows: 

   (7) 

  (8) 

where superscript (*) indicates that the quantity is 

related to rigid (r) or soft (s) cylinders, and  

and   are resonance scattering functions, 
expressed as,  

 
Fig. 1  Geometry of an elastic cylinder with 
a spring interface. The gap between the 
cylinder and the matrix is ignored. 
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   (9) 

   (10) 

Applying Eqs. (7) and (8) to Eqs. (1) and (2), 
respectively, we can express the form functions 
purely in terms of the resonance scattering functions: 

   (11) 

   (12) 

where the partial wave form functions  

and  are given by,  

  (13) 

  (14) 

According to the resonance theory, each 
partial wave is considered to affect the total 
scattering field at the corresponding resonance 
frequency. We  demonstrate this phenomenon 
through a numerical example in the next section. 

 

3. Numerical results and discussion 

We present the numerical result for the 
longitudinal scattering case. Table I lists the material 
parameters used. The nondimensional interfacial 
stiffnesses are taken as  and 

 , where   is the Lamé constant of the 
matrix. The maximum order of the normal mode  
is equal to  instead of  , where 

  is the maximum value of the 
nondimensional frequency   in the numerical 
analysis. Here, we consider the rigid case (r) in Eq. 
(13), because the cylinder is considered to be made 
of steel and is known to behave as a rigid body 
except at resonance frequencies. 

Figure 2(a) shows the amplitude of the 
form function   calculated using Eq. (1). 
Figures 2(b)‒(e) show the amplitude of the partial 

wave form function  (for 

) obtained using Eq. (13). The horizontal axes 
in Fig. 2 represent the nondimensional frequency 

. Several peaks can be observed in Figs. 2(b)‒(e), 
corresponding to each local minimum in Fig. 2(a). 
The same trend can be seen in the case of transverse 
scattering. This indicates that the total backscattering 
amplitude decreases because of the partial wave at 
the resonance frequency. This result is consistent 
with those of previous research1,3 and shows that the 
resonance theory can be extended to cases with a 
spring boundary condition. 

 

4. Conclusions 

In this paper, we propose a resonance 
theory for the backscattering by an elastic cylinder 
with a spring interface. The numerical results of the 
form function and the partial wave form functions 
for backscattering are given. We prove that the 
resonance theory can be extended correctly to the 
case with a spring boundary condition.  
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Fig. 2  (a) Form function for longitudinal 
scattering and (b)‒(e) partial wave form functions 
for the first fourth wave modes ( ) for 
backscattering.  

Table I  Physical properties of materials  

Material 
Mass density 

 
Longitudinal wave velocity 

 
Transverse wave velocity 

 
Aluminum 
(Matrix) 

2700 6420 3132 

Steel 
(Cylinder) 

7840 5908 3205 
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