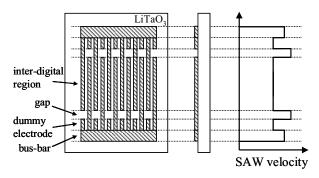
Reduction of Transverse SAW leakage on the Resonator based on Al/42° YX-LiTaO₃ substrate structure

LiTaO3 基板共振器の SAW 横方向漏洩の低減に関する検討


Tomoya Komatsu[‡], Hiroyuki Nakamura, Hidekazu Nakanishi, Tetsuya Turunari, and Joji Fujiwara (Industrial Devices Company, Panasonic Corporation) 小松 禎也[†], 中村 弘幸, 中西 秀和, 鶴成 哲也, 藤原 城二 (パナソニック デバイス社)

1. Introduction

The transverse SAW leakage toward the bus-bar causes the increased insertion loss(IL) in leaky SAW resonators on a 42° YX-LiTaO₃(42LT) substrate [1]. A narrow gap between the inter-digital electrode and the dummy electrode less than 0.25 λ is effective to reduce the transverse SAW leakage [2]. However, it is difficult to realize such a narrow gap in the high frequency applications. This paper proposes the new resonator structure for the reduction of the transverse SAW leakage without narrowing the gap.

2. Reduction of Transverse SAW leakage

Fig.1 shows the schematic of the conventional SAW resonator structure, and the outline of SAW velocity on each region. Leaky SAW on a 42LT substrate has the waveguide in the velocity Regarding faster region. to the conventional structure, the SAW velocity on the gap and the bus-bar is faster than that on the inter-digital region. Therefore, the transverse SAW leakage occurs toward the bus-bar. Conversely, the transverse SAW leakage toward the bus-bar could be reduced by making the velocity on the bus-bar slower than that on the inter-digital region.

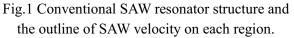


Fig.2 shows the schematic of the proposed SAW resonator structure, and the outline of SAW velocity

komatsu.tomoya@jp.panasonic.com

on each region. The proposed SAW resonator consists of aluminum(Al) grating and deposited Ta_2O_5 film on the outside of the inter-digital region. Since the density of Ta_2O_5 is much higher than that of Al [3], the SAW velocity on the bus-bar could be slower than that on the inter-digital region.

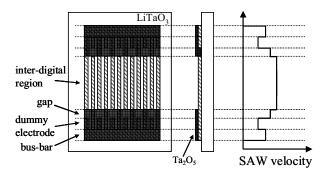


Fig.2 Proposed SAW resonator structure and the outline of SAW velocity on each region.

The effect of Ta_2O_5 film for the structure was analyzed by FEMSDA [4]. Fig.3 shows the analytical results of variation of SAW velocity by Ta_2O_5 film thickness. In the analysis, the relative Al thickness was set at 9% and the metallization ratio was set at 0.5.

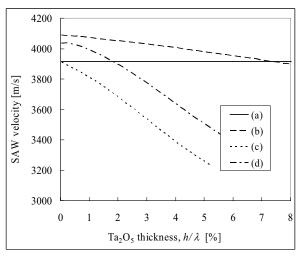
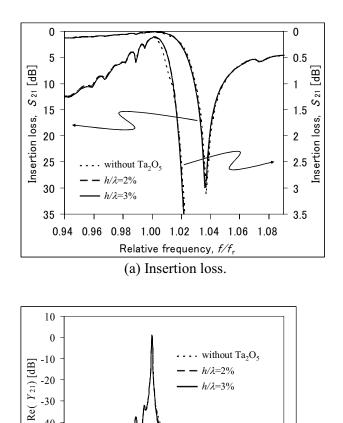


Fig.3 Variation of SAW velocity by Ta₂O₅ film thickness. (a) Inter-digital region, (b) Gap, (c) Dummy electrode, and (d) Bus-bar.

It was confirmed that the SAW velocity on the bus-bar could be made slower by deposited Ta_2O_5 film. This result suggests that Ta₂O₅ film thickness of 2% is enough to reduce the transverse SAW leakage toward the bus-bar. On the other hand, Ta₂O₅ film thickness of 7.5% is required to make the SAW velocity on the gap slower than that on the inter-digital region.

3. Experimental Results

The SAW resonators with the gap of 0.5λ and Ta_2O_5 film on the outside of the inter-digital region were fabricated on 42LT substrate. The design parameters are those shown in Table I. Fig. 4 shows the measured resonance characteristics by deposited Ta₂O₅ film. Here, Ta₂O₅ film thickness conditions are relative thickness of 3%, 2%, and without Ta₂O₅ film, respectively. It is confirmed that IL of the resonator without Ta₂O₅ film increases remarkably above the resonance frequency by the transverse SAW leakage. On the other hand, the increase of IL is reduced by deposited Ta₂O₅ film without narrowing the gap. As the result of deposited Ta_2O_5 film of 2%, IL is improved about 0.25 dB at $f/f_r=1.01$. In addition, it should be noted here that the measured conductance characteristic of the resonators with relative Ta₂O₅ film thickness of 2% and 3% scarcely changes. This result suggests that the transverse SAW leakage toward the bus-bar could be suppressed by making the SAW velocity on the dummy electrode and the bus-bar slower than that on the inter-digital region.


Number of IDT	75 pairs
Number of reflector	15 pairs
Metallization ratio	0.5
Aperture	15λ
Gap	0.5λ
Dummy length	1.5λ

4. Conclusion

This paper proposed the new structure for reduction of the transverse SAW leakage toward the bus-bar in leaky SAW resonators on 42° YX-LiTaO₃ substrate without narrowing the gap. The transverse SAW leakage could be reduced by deposited Ta_2O_5 film on the outside of inter-digital region.

The analytical result suggested that the SAW velocity on the bus-bar could be made slower than that on the inter-digital region by deposited Ta_2O_5 film thickness of 2%.

Then the effect of the proposed structure was confirmed experimentally. The measured result showed that IL is improved about 0.25 dB at $f/f_r = 1.01$ by deposited Ta₂O₅ film thickness of 2%.

Relative frequency, f/f_r (b) Conductance characteristic.

0.98 1.00 1.02 1.04 1.06 1.08

 $h/\lambda=3\%$

Fig.4 Measured resonance characteristics by deposited Ta₂O₅ film.

Acknowledgment

0.96

We would like to thank Prof. Ken-ya Hashimoto of Chiba University for FEMSDA.

References

-30

-40

-50

-60

-70

-80

0.94

Conductance,

- 1. J. Koskela, J. V. Knuuttila, T. Makkonen, V. P. Plessky, M. M. Salomaa: IEEE Trans. UFFC, vol. 48, pp. 1517-1526, 2001
- 2. M. Solal, L. Chen, and J. Gratier: IEEE Ultrason. Symp., pp. 175-180, 2010
- 3. H. Nakanishi, H. Nakamura, and R. Goto: Jpn. J. Appl. Phys., vol. 49, 07HD21, 2010
- 4. G. Endoh, K. Hashimoto, and M. Yamaguchi: Jpn. J. Appl. Phys., vol. 34, pp. 2638-2641, 1995