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1. Introduction

A perfectly matched layer (PML) is an 
absorbing boundary conditions for truncating the 
computational domain of open regions without 
reflection of oblique incident waves. In 1994, 
Berenger invented a PML for electromagnetic 
waves in the finite difference time domain (FD-TD) 
method by a spliting field method.1) Because fields 
in Berenger’s PML do not satisfy the Maxwell’s 
equations, two concepts have been  introduced for 
implementation in the finite element method (FEM) 
of electromagnetic wave problems: the analytic 
continuation or the complex coordinate stretching2,3)

and anisotropic PMLs.4) Nowadays PMLs for 
electromagnetic waves are widely used in the 
FD-TD method and the FEM.

Extension of PMLs to elastic waves in 
isotropic solids in the Cartesian coordinate first 
appeared in 1996.5,6) In the cylindrical and 
spherical coordinates, PMLs were generated by 
using spliting field method in isotropic solids in 
19997) and by using analytic continuation in 
anisotropic solids in 2002.8) Recently validity and 
usefulness of PMLs derived from the analytic 
continuation in piezoelectric solids in the Cartesian 
coordinates was demonstrated. 9-11)

From the differential form on manifolds,
we have derived PMLs for elastic waves in the 
Cartesian,12) cylindrical and spherical coordinates13)

and revealed that the contravariant components of 
stress tensors and the particle displacement vectors 
in the analytic continuation are not transformed to 
the real space.12) Therefore, the discrepancy in the 
stiffness constants derived from two methods exists.

In this paper, we examine a derivation of
PMLs of elastic wave propagation in piezoelectric 
solids from the differential form on manifolds. PML 
material parameters in the orthogonal coordinate 
systems such as the Cartesian and cyrindrical 
coordinates are presented. A dispcrepancy in 
piezoelectric stress constants exists in addition to 
the stiffness constants appeared in nonpiezoelectric 
solids in the Cartesian coordinates.12,13) The 
different transformation rules for the contravariant
components cause this discrepancy.
2. Differential Form
--------------------------------------------------------------
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Particle displacements u, densities of 
momentums P, stress tensors , and displacement 
gradient tensors are given as follows:

= , (1)

= ! , (2)

= , (3)

= , (4)
where / and ( , , , = 0,1,2 ) are 
contravariant and covariant basis vectors, and 

represent the tensor product and the cross 
product, respectively. Newton’s equation of motion
is

d = , (5)
where d is the exterior differential operator.

Using a quasi-static approximation of 
electromagnetic fields in piezoelectric solids with 
omitting rotational electric fields and representing
electric fields as = , we may consider the 
electric potentials the irrotational electric fields 
E, electrical displacements D, and the Gauss law in 
the piezoelectric solids for computing elastic fields 
coupled with electromagnetic fields.

The electric potentials are scalars, whose 
tensor type are contravariant and covariant of rank 0. 
Two vectors E, D and the Gauss law are given as 
follows:

E = E dx , (6)
= , (7)

dD = 0. (8)
Changing the coordinate gives relations of

tensor components in the two coordinates: for a
tensor V with a tensor type of contravariant of rank 
1 and covariant of rank q, =

=
, the relation of tensor components is

= . (9)
Using the complex coordinate stretching2,3,8) given 

by = ( ) = R( ) + j I( ) with 
the two real functions R( ) and I( ), we have a
relation:
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=
× ( ) ( ) ( ) . (10)

Here, j is the imaginary unit.

3. PMLs in the Orthogonal Coordinate Systems

Assuming that the same constitutive 
equations in the real coordinates exist in the 
complex coordinates, we have following relations:

= / , (11)
= , (12)

= + . (13)
Here, the superscript c denotes the value in the 
complex coordinate and the mass density , the 
stiffness , the piezoelectric stress constants 

, , and the permittivity at constant strain 

are the values corresponding to the original 
material parameters of its PML in the real
coordinate. Using eq. (10) to eqs. (1)-(4) and eqs. 
(6) and (7), we obtain

= (no summation),    (14)

= (no summation), (15)

= (no summation),    (16)

= (no summation), (17)

= (no summation),    (18)

where = / . Here, and are the 
scale factors of the complex and the real orthogonal 
coordinates: for example, = = 1 (i = 0,1,2) 
in the Cartesian coordinates.13) The quotient rule 
and eqs. (12)-(18) yield PML material constants:
the mass density and the stiffness are

= , (19)
= (no summation),(20)

and the permittivity and the piezoelectric stress 
constants are

= (no summation), (21)

= (no summation) , (22)

= (no summation). (23)
Eqs. (19) and (20) for anisotropic solids 

were presented in the previous papers.12,13) The 
piezoelectric stress constants and lose 
the transpose symmetry relation. We note that the 
stress tensors are symmetric12,13): = for i j.

4. Comparison with PML Constants Derived 
From Differential Forms and the Analytic 
Continuation in the Cartesian Coordinates

By the analytic continuation, the mass 
density and stiffness of PML are given as follows:

= , (24)
= (no summation). (25)

The permittivity and the piezoelectric stress 
constants are9-11)

= (no summation), (26)

= (no summation), (27)

= (no summation).(28)
Note that the transpose symmetry relation holds in 
the piezoelectric stress constants derived by 
analytic continuation. However, the stress tensors
computed by are not symmetric:
for i j.

The mass density and the permittivity, eqs. 
(24) and (26), are identical to our results, eqs. (19) 
and (21). The stiffness and the piezoelectric stress 
constants that are derived by analytic continuation,
eqs. (25), (27) and (28), are different from eqs. (20),
(22) and (23) because the coordinate transformation 
corresponding to the components of contravariant 
of rank 1 of the stress tensor and the displacement 
gradient, si in the eqs. (15) and (16), is excluded in 
the analytic continuation.
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