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1. Introduction 

For modeling propagation of elastic waves in 
anisotropic solids by finite-difference time-domain 
(FD-TD) method, we presented a staggered grid 
with the collocated grid points of velocities 
(SGCV)1). To impose boundary conditions on the 
FD-TD model simply, the new grid was derived 
from a single control volume of the momentum 
conservation law and line integrations of the 
displacement gradient. Abandoning the cross-shape 
arrangement of the velocity vector results in 
interpolations of the velocity components away 
from grid points. In an isotropic solid in two 
dimensions, numerical dispersion relations of 
vertically polarized shear waves (SV-waves) and  
longitudinal waves (P-waves) modeled by (2,2) and 
(2,4) schemes have been derived and investigated 
numerically.1) 

Because the previous paper1) focused on the 
derivation of the SGCV, we reported one numerical 
example of the numerical dispersion in the isotropic 
solid with a Poisson ratio of 0.3 for a FD-TD model 
with a Courant number R=Vp t/ of 0.5 and a 
normalized spatial interval / s of 0.1 where Vp, t, 

and s are the phase velocity of the P-wave 
propagating in the solid, the time and the spatial 
intervals, and the wavelength of the SV-wave used 
in the analysis. We concluded that the interpolation 
with 3rd degree bi-polynomials gives comparable 
results of conventional staggered grids.2,3) Recalling 
that the numerical dispersion relations of the SGCV 
depend on the Poisson ratio but those of the 
conventional staggered grids do not, we should 
investigate the numerical dispersions for other 
Poisson ratios. 

In this paper, we will present computed 
results of numerical dispersions of SV- and P-waves 
propagating in infinite isotropic solids with the 
Poisson ratio in the range of 0.1 to 0.495 by the 
FD-TD models with the (2,2) and (2,4) schemes in 
two dimensions. These results will show the 
usefullness of the SGCV models with the Poisson 
ratio in the range of 0.1 to 0.45. 
2. FD-TD Models with the SGCV in Two 
Dimensions 
------------------------------------------------------------ 
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 In an isotropic solid in two dimensions, 
the uniform SGCV for P- and SV-waves 
propagation reduces to a grid shown in Fig. 1. Here,  
I and J are integers for a grid point with the position 
vector  where  are the unit 
vectors in the directions of x- and y-axis, and  
and  (i,j = x, y) are the i-component of a particle 
velocity and the ij-component of a stress tensor, 
respectively. 

Newton's  equation of motion and 
relations of displacement gradient tensors  and 
velocity vectors are modeled as follows: 

=     for i=x,y,  (1) 

     for i,j=x,y. (2) 

Here,  is the mass density, t is time, and   
is a finite difference approximation of the spatial (i 
= x, y) or time (i = t) derivative of a scalar function 
f(r,t) with respect to i on the grid point p (  for eq. 
(1),  and  for eq. (2) ) where  with 
an integer K. Using the derivative of the stress and 
strain relation with respect to time and eq. (2), we 
obtain following relation: 

.                      (3) 

Here and are the Lamé constants, and ij is the 
Kronecker delta.  

Velocity gradients  and 
 for k = x, y on the grid points of the 

stress components Tkx and ky, respectively, are 
required for the time update eq. (3). We used 
interpolations of velocity vectors on the four 

Fig.1 A unit cell of staggered grid with collocated grid 
points of velocities in two dimensions for P- and 
SV-waves propagation. 
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corners by a tensor product of two polynomial 
interpolations on adjoining grids1) with the 

 values on the and  grids in the x- 
and y-directions, respectively, as follows: 

 .  (4) 
3.  Numerical Dispersion Relations of Plane SV- 
and P-waves in an Isotropic Solid 

 We consider monochromatic elastic plane 
waves propagating in an infinite solid with wave 
vector k on the x-y plane and the angular frequency 

. Assuming the dependence of particle velocities 
on discretized time and spatial grid points as exp 
j( t -k ) and deriving wave equations from eqs. 
(1) and (3), we obtain the dispersion relation: 

,       (5) 

where R = Vp  is the Poisson ratio, 

 (l = x, y) for (2,2) scheme and 

 for (2,4) scheme, 
the sign + and - are for the P- and SV-waves in the 
double sign , and CD is 1, 

,  ,

for the 
conventional staggered grids2,3) and the SGCV with 
Dx = Dy = 1, 3, 5, respectively.  
4. Computed Results of Numerical Dispersions 

 Figure 2 shows the computed results for 
the numerical dispersions with = 0.495, 

where s = 2 Vs/ and

. Here, VNp and VNs are the values of P- and 
SV-wave velocities given by eq. (5) and the 
propagation angle of plane waves is defined as 

. The values VNp and VNs of the 
SGCVs are the same as those of conventional grids 
for = 0, /2 and the maximum difference between 
the values appeare for = /4. These results have 
been confirmed with = 0.3.1) In the following 
results, we will show the absolute value of the 
difference between computed results of the 
staggered grid  with = /4 and =  for the 
maximum numerical dispersion on the grid. 
  Figure 3 shows the maximum difference 
of computed numerical dispersions as a function of 

in the range of 0.1 to 0.495. Interpolation with Dx 
= Dy = 5 for the SGCVs except SV-waves in solids 

with the Poisson ratio over 0.45 by (2,4) scheme 
reduces the numerical dispersions to the levels of 
the conventional grids. 
 Figure 4 shows the maximum difference 
of computed numerical dispersions as a function of 
N= s/ with = 0.3 and . With increasing 
N, numerical dispersions of the P- and SV-waves 
decrease.  
 We conclude that the SGCV models of the 
SV-waves propagation in the solids with a large 
Poisson ratio such as 0.49 must be divided in finer 
grids than the conventional staggered grids. 
However, the SGCV models of P-waves require 
coarse grids comparable to the conventional grids.  
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Fig.4 Maximum numerical dispersions of (a) P- and (b) 
SV-waves propagation in an infinite isotropic solid as 
functions of  N = s/ with = 0.3 and . 

(b) SV-waves (a) P-waves 
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Fig.3 Maximum numerical dispersions of (a) P- and (b) 
SV-waves propagation in an infinite isotropic solid as 
functions of  with . 

(a) P-waves 
Fig.2 Numerical dispersions of (a) P- and (b) SV-waves 
propagation in an infinite isotropic solid with = 0.495, 
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