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1. Introduction 
Cylindrical pipes are widely used in indus-

tries such as nuclear power plants and micro total 
analysis systems (µTAS).  Nondestructive evalua-
tion (NDE) of such pipes is therefore crucial.  
NDE as well as ultrasonic flowmeters can be used 
to characterize pipes filled with fluid.  Guide wave 
of a hollow pipe was investigated theoretically by 
Gazis1, and we previously expanded on the theory 
proposed by Gazis for a fluid-filled pipe2,3.  Those 
studies were for the condition that attenuations of 
the pipe and the fluid are negligibly small.  
However, the attenuations can not be neglected in 
some condition such as a inspection of a spallation 
neutron source mercury target, and a nondestructive 
inspection of an erosion of the mercury container 
walls4 is required.  Threfore, we analyzed the 
guided wave which propagates pipe with 
attenuation.

2. Theoretical analysis 
Fig. 1 shows the theoretical model of a 

cylindrical pipe and its coordinate system 
(cylindrical coordinates).  The author's theoretical 
basis is an expansion of that of hollow pipe by 
Gazis1.  The displacement solidu  of the pipe 
( bra ) and the displacement fluidu  of a fluid 
( ar0 ) are represented by a vector ( H ) and 
scalar potential ( s , f ) as follows. 
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Fig. 1 Theoretical model 

Wave equations of the potentials are as follows. 
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Here, t  idicates time, lv , tv  and fv  represent 
sound velocities of longitudinal wave of pipe, 
taransversal wave of pipe and logitudinal wave of 
fluid, respectively.  The potentials are as follows. 
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k , , n , i  , , f  and v  represente the 
wave number of the guided wave propagating in a 
pipe, the angular frequency, the circumferential 
mode parameter, the imaginary unit and an 
attenuation constant of the pipe, an attenuation 
constant of the fluid and a flow velocity of the fluid, 
respectively.  By eq.(2) and (3), below equations 
are obtained. 
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nJ , nY , nI , nK  are the Bessel function of the 
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first kind, the Bessel function of the second kind, 
the modified Bessel function of the first kind and 
the modified Bessel function of the second kind, 
respectively.  nZ , nW , 1 , 1  and 1  are 
show in Table 1-3.  Each argument of the Bessel 
functions become a complex number when  or 

f  is not zero.  By the property of the gauge 
invariance, any one of the three potentials ig
( i 1, 2, or 3) can be set to zero.  Setting 02g
yields 

gr g g1   (6) 
By eq.(1), (3) and (6), the displacements are as 
follows. 
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The boundary conditions are as follows. 
fluidsolid
rr uu , fluidsolid

rrrr ,
0solidsolid

rzr  at ar   (8) 
0solidsolidsolid

rzrrr  at br
solid  and fluid  are the stress tensors of the 

pipe and fluid, respectively.  They are 
obtained by displacements and solid’s and 
fluid’s densities ( s  and f ).  By eq. (7) 
and (8), a homogeneous systems of linear 
equations is obtained. 
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][ ijc  is a 77  matrix, and ijc are similar to our 
previous result except for k  and fk .  All k
and fk  of ijc  in refs. 2 and 3 are replaced by 

*k  and *fk , respectively.  For example, some 
ijc s are shown below. 
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A nontrivial solution is obtaiend when the 

determinant of ][ ijc  is zero. 
0]det[ ijc           (11) 

Because eq (11) containes the frequency 
( 2/f ) and the phase velocity ( V ), the 
dispersion curves are obtained. 

Table 1 Parameters for 
1 )( 1rZn )( 1rWn

0)Re( 2 1 )( 1rJn )( 1rYn

0)Re( 2 i/ 1 )( 1rIn )( 1rKn

Table 2 Parameters for 
1 )( 1rZn )( 1rWn

0)Re( 2 1 )( 1rJn )( 1rYn

0)Re( 2 i/ 1 )( 1rIn )( 1rKn

Table 3 Parameters for 
1 )( 1rZn

0)Re( 2 1 )( 1rJn

0)Re( 2 i/ 1 )( 1rIn

3. Discussions and Conclusions 
We obtained anyalitical result of the guided wave 
which propagates pipe or pipe with fluid with 
attenuation.  As a sample, the determinant of ][ ijc
is plotted in Fig. 2.  We can see two V s in Fig. 2.
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Fig. 2 Determinant of ][ ijc
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