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1. Introduction 
Until now, the experiments on the propagation of 
acoustic soliton were carried out on some crystals. 
For example, giving heat strain to the edge of MgO 
crystal by using an optical laser pulse, the heat 
strains were observed as solitons which depended 
upon given energy. 1) Excitation of solitons has been 
reported in the other crystal systems, also. 2-8) The 
forms of those observed excitations were slightly 
different from theoretical soliton, it is considered 
that a state is composed of both solitons and other 
excitations. If it makes a theoretical soliton on 
actual crystal, proper initial input must give to the 
system. However, in arbitrary systems it is difficult 
to derive the initial condition for generating a 
theoretical soliton. 
 In the range where atomic position is slightly 
shifted from an equilibrium point and where weak 
nonlinear forces act, the shape of interatomic 
potential is almost the same on most substances, 
and that of Toda lattice which has soliton solutions 
is almost the same, also. That is to say, in the 
arbitrary system where weak nonlinear forces act, if 
it gives the Toda 1-soliton solution as the initial 
input, it is expected that a soliton stably propagates. 
 Therefore, in the present study the propagation of 
Toda 1-soliton on one and two-dimensional model 
crystals systems have been studied and the results 
are presented. And the ideas of ways to generate a 
soliton in actual crystal are mentioned later. 
 
2. Methods 
 One of the model crystal adopted in the simulation 
is illustrated in Fig. 1. NN and NNN indicate the 
positions of the nearest and the next nearest 
neighbor atoms for the reference atom. 
An-harmonic forces up to the third order are taken 
into account, and central forces are considered 
between atoms. The equation of motion for the  
(i, j)th atom in the crystal is,  
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where m is the atomic mass, Ri, j is the coordinate of 
the (i, j)th atom, and T represents the time. Here, 

ji ,  is the potential between the (i, j)th atom at Ri, j 
and other (p, q)th atom at Rp, q, 
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Here (e) means that the quantity is in the 
equilibrium position, Di, j and Dq, p are the 
displacements of the (i, j)th atom and the (p, q)th 
atom from their equilibrium positions, respectively. 
 

 
 

Fig. 1.  Two-dimensional square lattice model crystal 
used in computer simulation. 
 
 
Next Toda 1-soliton solution is as follows: 
 

tik

tki

i e
e

b
R 12

2

1
1ln1    .                (4) 

－ 313 －

Proceedings of Symposium on Ultrasonic Electronics, Vol. 33 (2012) pp. 313-314 
13-15 November, 20123Pa1-7



Here R, i, b, k, , and t are the displacement, the 
number of particles, the constant, the wave number, 
the angular velocity, and the time, respectively. 
 In the simulation a system of MD units is used: the 
atomic mass m=1, the NN distance L=1000, the 
time T=1. Toda potential parameters are as follows: 
a=1, b=1, t=50 and k=0.3, and  is the function of a, 
b, m, and k. The force constants are selected as 
C(1)=1, C(2)= -0.5 and C(3)=0.16 in order that the 
model potential nearly fits Toda potential. The ratio 
of force constants is defined as K C(n)

NNN /C(n)
NN  

(n =1, 2, and 3), which is a parameter that means a 
contribution of NNN. The experimental systems are 
two cases. 
 
(S1) one-dimensional (1D) nonlinear lattice case: 
the number of atoms is 1200 in the x directions. 
 
(S2) two-dimensional (2D) square lattice case: the 
numbers of atoms are 1200 and 32 in the x and y 
directions, respectively. 
 
The initial input displacements are given to the 
system by modified eq. (4): the coefficient hr is 
multiplied to the whole of eq. (4). And the 
velocities of atoms can be derived from the 
differential of eq. (4). The experiments are carried 
out on parameter hr and K. 
 
3. Results 

 The force Fi of the atoms as functions of the 
atomic position i at a definite time after the pulse 
application, or the snapshots of Fi, were computed. 
Examples of the results, (S2) case, the 16th line  
along the x direction in Fig. 1, are illustrated in Fig. 
2(A)-(H) since the results in 1D were almost the 
same with 2D (K=0). (B), (D, G, H), and (F) are 
normalized by (A), (C), and (E), respectively. In the 
case of (B), the sech-type undulation has changed 
into the dispersive undulations since the energy of 
initial input was too small. In the case of (D), the 
sech-type undulation has stably kept its form during 
the propagation. In the case of (F), the sech-type 
undulation has changed into the nonlinear and 
dispersive undulations since the energy of initial 
input was slightly large. It can be seen from (G) and 
(H) that the effects of NNN contribute to the 
stability of soliton. Namely an increase in K 
contributes to an increase in the energy of an initial 
input. In the paper 1-3) it was given a thermal strain 
as initial input by using laser pulse. It is considered 
that it might be difficult to generate a soliton 
without superfluous excitations in the system. If it 
generates Toda 1-soliton  in actual crystal, it must 
give proper initial input to the system. It is a 
step-like initial input which modified eq. (4). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.  Force Fi (arb.unit) of atoms vs. atomic 
position i for the x direction.  
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