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1. Introduction 

Extended thermodynamics (ET) [1] is a theory 
which is applicable to highly-nonequilibrium 
phenomena beyond the validity range of the 
theories based on the assumption of local 
equilibrium, such as Navier-Stokes and Fourier 
(NSF) theory. Recently ET theory of rarefied 
polyatomic gases and also dense gases was 
developed [2]. The validity and the usefulness of 
that theory are confirmed by the fact that the the ET 
theory can explain the dispersion relation of 
longitudinal waves in rarefied polyatomic gases 
even in the high-frequency region in which the NSF 
theory fails [3].  

The purpose of the present paper is to make 
clear the experimental condition to measure 
transverse waves in rarefied polyatomic gases 
quantitatively. In the NSF theory, there is no 
solution of propagating transverse waves because 
their governing system of partial differential 
equations is parabolic type. However, there can 
exist the solution in the ET theory which has a 
system of hyperbolic balance equations. As the ET 
theory predicts the same result as that of the NSF 
theory in low-frequency region, we will focus on 
the dispersion relation in the high-frequency region. 
2. Basic equations 

We adopt the ET theory with 14 independent 
variables; the mass density , velocity vi, 
temperature T, symmetric traceless part of viscous 
stress S<ij>, dynamic pressure =Sii/3) and the heat 
flux qi (i,j=1,2,3). The caloric and thermal equations 
of state for rarefied polyatomic gases are given by 

 
 

where  and p are, respectively, the specific internal 
energy and the pressure. Here a is given by kB/m 
with kB and m being the Boltzmann constant and the 
mass of a molecule. The specific form of  is 
determined, for example, by quantum statistical 
mechanics.  

The basic equations are the linearized 
equations in the neighborhood of a reference 
equilibrium state:  

where a quantity with the subscript 0 represents the 
quantity in the reference equilibrium state and the 
summation convention is adopted. Here *

vc  and xi 
are, respectively, the dimensionless heat capacity 
(d /dT)|0/a and the position. A dot on a quantity 
represents material time derivative, and S, , q 
are the relaxation times which are related to the 
shear viscosity , the bulk viscosity  and the heat 
conductivity , respectively.   
3. Dispersion relation for transverse waves 

We consider a plane harmonic wave 
propagating in x1-direction. Without loss of 
generality, we can assume the following type of the 
solution of a transverse wave: 

 
 
 
 

Note that we can easily prove that = 0, T = T0 
and  must be zero. The solution is expressed, 
with frequency  and complex wave number k, by  
 
 
where u, w and t are, respectively, the state vector 
(vi, S<ij>, qi) , a constant amplitude vector and time.  
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The dispersion relation is obtained by  
 
 
 

where s qs q s z k The phase velocity  
vph and the attenuation factor are expressed in 
terms of the solution z of the dispersion relation:  

 
 
 
 

4. Typical results: the case of n-H2 
We study the dispersion relation numerically. 

For example, the results in the case of normal 
hydrogen are shown. The results for other kinds of 
gases will be reported at the conference. We can 
estimate the temperature dependence of qs by using 
the experimental data on  and  [3]. The conditions 
of the numerical analysis are as follows: T0 = 
293[K], *

vc = 2.45 and qs = 1.46.  
Figure 1 shows the dependence of the 

dimensionless phase velocity vph/c0 and the 
attenuation factor c0 S  on the dimensionless 
frequency , where c0 is the (longitudinal) sound 
velocity in the low-frequency limit in the reference 
equilibrium. It can be seen that both vph/c0 and 
c0 S approach zero as  tends to zero. When  
becomes large, these have nonzero values and 
approach some finite values as  tends to infinity. 

Figure 2 shows the ratio between the 
characteristic length  =1/ , which is the 
propagation length that the amplitude becomes 1/e 
times, and the wavelength . This ratio represents 
how quickly the amplitude decreases compared 
with the wavelength. In order to observe a vibrating 
character of a wave, the value of this ratio must be 
larger than O(100). It is seen from Figure 2 that the 

ratio has very small value in the low-frequency 
region and increases monotonically with the 
increase of . The above necessary condition 
becomes to be satisfied when  is higher than 
O(100). We conclude that  should be higher than 
O(100) for experimental observations of the 
transverse waves.  

5. Summary and concluding remarks 
In this paper, the experimental condition to 

measure transverse waves in rarefied polyatomic 
gases quantitatively is obtained based on the 
recently-developed ET theory.  

The conclusion is as follows: It is difficult to 
detect the transverse waves in the low-frequency 
region in which the NSF theory is valid. However, 
the transverse waves are measurable in the 
high-frequency region with  higher than O(100). 
We expect the experiments for high-frequency 
transverse waves, for example, transverse waves of 

which corresponds to 0.5[GHz] at the 
pressure p0 = 1000 [Pa]. 

Because the wavelength of a transverse wave 
is very small  and because the wave decays 
quickly, the results may play important roles in the 
phenomena in small scale, for example, those in 
nano-technology.  
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Fig. 1 Dependence of the dimensionless phase velocity 
(above) and attenuation factor (below) on the 
dimensionless frequency  for n-H

2
 at 293[K]. 

Horizontal dotted lines indicate the limiting values 
when .  

 
Fig. 2 Dependence of ratio between the characteristic 
length 1/ and the wavelength  on the 
dimensionless frequency  for n-H

2
 at 293 [K]. 
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