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1. Introduction

A staggered grid with the collocated grid 
points of velocities (SGCV) was presented for 
modeling propagation of elastic waves in 
anisotropic solids by finite-difference time-domain
(FD-TD) method1). To impose boundary conditions 
on the FD-TD model simply, the new grid was 
derived from a single control volume of the 
momentum conservation law and line integrations 
of the displacement gradient. Abandoning the 
cross-shape arrangement of the velocity vector 
results in interpolations of the velocity components 
away from grid points. Numerical dispersions of 
vertically polarized shear waves (SV-waves) and  
longitudinal waves (P-waves) in an infinite 
isotropic solid by (2,2) and (2,4) schemes have been 
investigated and it has been reported1) that the 
interpolation with 3rd degree bi-polynominals gives 
comparable results of conventional staggered 
grids2,3).

For modeling elastic wave devices by FD-TD 
method, boundary conditions on planar free 
surfaces should be examined. With the conventional 
staggered grids2,3), FD-TD models can use the 
stress-imaging technique3), the vacuum formalism4)

or the adjusted staggered scheme5). Because the 
velocity vectors are on the center grid points and all 
stresses on the grid surfaces are normal components
in the FD-TD models with the SGCV, imposing of 
planar free surface conditions is to set all stress 
components on the surface zero. However, the 
interpolations of the velocity vectors away from the 
grid points near the free surface are required to 
compute velocity gradients. Hence a modification
must be introduced. Extrapolation techniques or 
one-sided finite differentiation schemes are
cacandidates for immediate computation of the 
velocity gradients on the grid points of stresses.

In this paper, for computation of velocity 
gradients, we will examine the derivatives of 
interpolation polynomials of velocity vector fields 
for the FD-TD models with the SGCV in two 
dimensions. We will extract the resonance 
frequency of the fundamental Lamé mode of a 
resonator on an isotropic solid and confirm the
--------------------------------------------------------------
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validity of the SGCV models of the free 
surfaces.
2. Modeling Planar Free Surfaces by FD-TD 
with the SGCV in Two Dimensions

2.1 Time update equations by FD-TD scheme 

In an isotropic solid in two dimensions,
the cell of a uniform SGCV for SV- and P-waves 
propagation reduces to a grid shown in Fig. 1. Here,

is the spatial interval of the grid, I and J are 
integers for a grid point with the position vector

where are the unit vector in 
the direction of x- and y-axis, and and (i, j
= x, y) are the i-component of a particle velocity 
and the ij-component of a stress tensor.

Newton's equation of motion and 
relations of displacement gradient tensors and 
velocity vectors are modeled by FD-TD schemes in 
two dimensions as follows:

= for i = x, y, (1)

for i, j = x, y. (2)

Here, is the mass density, t is time, and
is a finite difference approximation of the spatial 
(i=x, y) or time (i=t) derivative of a scalar function
f(r,t) with respect to i on the grid point p ( :eq. (1), 

and :eq. (2) ) where with an integer 
K and the time interval . Using the derivative of 
the stress and strain relation with respect to time 
and eq.(2), we obtain following relations:

for i, j= x, y. (3)

The stiffness component ijkl of the isotropic solid is

Fig.1 A unit cell of staggered grid with collocated grid 
points of velocities in two dimensions for SV- and
P-waves propagation.
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given by .
Here and µ are the Lamé constants, and ij is the 
Kronecker delta. 

Velocity gradients and 
for k=x,y on the grid points of the stress 

components kx and ky, respectively, are required 
for the time update eq. (3). Using the finite 
difference approximation, therefore, velocity 
vectors on the four corners of the SGCV grid were 
interpolated in the elastic solid1).
2.2 FD-TD model of free surfaces by SGCV

Consider an edge of a SGCV grid on a 
free surface. Velocity gradients or 

(k = x, y) on the center point of the 
edge whose normal unit vector is or ,
respectively, cannot be computed by the 
interpolation scheme in the infinite solid1) because 
of lack of the grid points of the velocity vector in 
the vacuum. Recalling that the derivative of an 
interpolation polynomial is a scheme for numerical 
differentiation, we can compute the required
gradients vk,x or vk,y on the edge immediately: when 
a tensor product of two polynomial interpolations of 
k-component of the velocity vector on adjoining
grids,

for k=x, y, is used, we obtain vk,x(x0,y0) = 10

or vk,y(x0,y0) = 01. Here, the coefficient or 
is computed by the values on the and 

adjoining grids in the x- and y-directions, 
respectively.
3. Analysis of a Lamé Mode Resonator

3.1 FD-TD models

In two dimensions, we consider a Lamé
mode resonator that is a square with a side length of 
L on an isotropic solid with Poisson's ratio 0.25.
When the wavelength of the SV-wave at the 
frequency fs is 2L, the fundamental resonance 
frequency f1 of the Lamé mode is . In the 
following results, f1 = 1MHz and ,
where vp is the phase velocity of the P-wave in the 
infinite solid. Near the free surface, for computation 
of vk,x(x0,y0) or vk,y(x0,y0), we choose Dx = Dy =2 or 
Dj = 3 and the other of 2. In the solid away from the 
surfaces, we use a bilinear polynomial interpolation 
with four nodes for computation of 
and .
3.2 Computation of the resonance frequency

The observation point and vibration point
are (L/4, L/4) and (-L/4, -L/4) on the x-y plane with 

the origin on the center of the square resonator. The 
vibration of the x-component of the particle velocity 
expressed as a sine-modulated Gaussian pulse with 
the center frequency f1 and the half-width in time
83.26RL/vp yields a discrete time response of the 
particle velocity of the observation point as shown 
in Fig. 2. Applying the discrete Fourier 
transform to the time response at the 
observation point in an interval from Ns t to Ne t,
we extract the resonance frequency of the 
resonator. Figure 3 shows the power 
spectrum with L/h = 26, Ns t = 28 RL/vp 52.26µs,
Ne t = 216 RL/vp and the coefficients, or 

, computed by the six adjoining grids.
Extracted resonance frequency is 0.9999MHz
and we may confirm the validity of our free 
surface models.

Figure 4 shows extracted resonance 
frequencies with Ns t = 28RL/vp 52.26µs and Ne t

= 2NRL/vp. Computed results by four and six 
adjoining grids with L/h = 4 are 0.992 and
0.985MHz, respectively, and we expect that 
use of six adjoining grids is preferable for an 
accurate model.
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Fig.2 A time response at
the observation point. 

Fig.4 Extracted resonance frequencies. 

Fig.3 Power spectra of 
x-components of particle 
velocities of the vibration 
and observation points. 
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