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1. Introduction 

To realize a quantitative diagnosis of liver 
disease, we have examined the relationship between 
the change of liver tissue and ultrasound images, 
and have developed the quantitative estimation 
method of liver fibrosis[1-3]. In these method, we 
have assumed that the echo signals of normal liver 
were Rayleigh distributed. However, actual data of 
normal liver obtained through diagnostic equipment 
slightly deviate from the Rayleigh distribution 
because of nonlinearity in measurement system, and 
then, estimation errors become larger. In this report, 
we studied a robust quantitative method that was 
effective in the sutiation such that the echo signals 
of normal liver were not Rayleigh distributed. 
 
2. Quantitative diagnosis with amplitude 
distribution 

Echo images of homogeneous tissue with high 
scatterer density, such as normal liver tissue, have 
many granular patterns that are called speckle 
pattern. It is known that the probability density 
function (PDF)  of RF signal amplitude x of 
the echo images can be approximated by Rayleigh 
distribution given by 

 

where  is shape parameter of the distribution. 
Focusing on the phenomenon that the PDF of 

echo signals gradually deviates from Rayleigh 
distribution with fibrosis progression, we have 
proposed an amplitude distribution model for liver 
fibrosis in which the distribution function is 
modeled by a combination of Rayleigh distributions 
(eq. (2)). 

  

where  is a variance ratio (the degree 
of fibrosis progression) and  is a 
mixture rate (the amount of fibrotic tissue). From 
the observed statistical properties, we can estimate 
the variance ratio ( ) and the mixture 

 rate as an inverse problem. 
 

3. Quantitative characteristics of disease 
progression model 
3. 1 Conventional method 

Since the skewness and the kurtosis are 
uniquely determined by the variance ratio and the 
mixture rate, in the conventional quantitative 
method, we have calculated the skewness and the 
kurtosis from the obtained data, and have estimated 
a variance ratio and a mixture rate as an inverse 
problem. The skewness and the kurtosis, statistical 
parameters, are moments  of the distribution 
with the parameter n = 3,4 in the following equation, 
respectively. 

 

where E is an expectation. In previous report, using 
the phantom as shown in Fig. 1, we obtained data in 
which degree of fibrosis progression and amount of 
fibrotic tissue were controlled arbitrarily, and then, 
estimated a variance ratio and a mixture rate. The 
results are shown in Fig. 2. There are large 
estimation errors at setting mixture rate ranging 
from 0 to 0.2, which is a region assuming initial 
lesion. Since skewness and kurtosis have higher 
order terms of amplitude value in their calculation 
process (eq. (3)), these errors are thought to result 
from fluctuations of higher amplitude area as shown 
in Fig. 3. 
 
3.2 Robust estimation method 

There is a problem that higher amplitude area 

Fig. 1 B-mode image of gray scale phantom. 
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strongly affects the estimation in the conventional 
method. To solve this problem, we examined to use  
lower order moments than skewness and kurtosis 
for estimation and tried to reduce the effect of 
higher amplitude area.  

  Moments around the mean were calculated 
using eq. (3). N-th power calculation of the value in 
eq. (3) was carried out while changing n from 0.75 
to 2.95 by 0.05. When n is not integer, the moment 
becomes a complex number. From one complex 
number, we can estimate distribution parameters in 
eq. (2).  

  Using the numerical simulation, we 
theoretically estimated the variance ratio and the 
mixture rate with n-th order moments, and 
evaluated the estimation accuracy. First, we 
estimated the variance ratio and mixture rate from 
several random trial data for each moment at setting 
mixture rate ranging from 0 to 0.2. Residual sum of 
squares in the estimated variance ratio and mixture 
rate for the true value at setting mixture rate ranging 
from 0 to 0.2 are shown in Fig. 4. The smaller value 
of the residual sums mean that estimation accuracy 
is high. Convetional method results are shown by 
the broken line in Fig. 4. Clear improvement is seen 
in the mixture rate estimation as shown in Fig. 4(b). 
Figures 5 and 6 show comparisons between the (a) 
conventional and (b) proposed methods , in which 
the order of the moment, n, is 1.6. We found that the 
mixture rate could be stably estimated at a setting 
mixture rate ranging from 0 to 0.05.  
 
4. Conclusions 

We estimated the model parameters of 
phantom PDF with a conventional method, and 
discussed the reason of errors. We proposed a  
method in which the lower order moment was used, 
and compared the estimation accuracy using 
numerical simulation and phantom. We will apply 
the proposed method to the phamtom data with 
nodule structure and the clinical data. 
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Fig. 2 Estimation of model parameters. 

Fig. 3 Probability density function of reflected signal from 
phantom at setting mixture rate 0. 

(a) Variance ratio (b) Mixture rate 
Fig. 4 Estimation accuracy of each moment. 

(a) (b) 
Fig. 5 Estimated variance ratio from (a) skewness and 
kurtosis, (b) n-th order moment. 

(a) (b) 
Fig. 6 Estimated mixture rate from (a) skewness and 
kurtosis, (b) n-th order moment. 
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